Do you want to publish a course? Click here

Harmonic mixing in two coupled qubits: quantum synchronization via ac drives

658   0   0.0 ( 0 )
 Added by Savel'ev Sergey
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simulating a system of two driven coupled qubits, we show that the time-averaged probability to find one driven qubit in its ground or excited state can be controlled by an ac drive in the second qubit. Moreover, off-diagonal elements of the density matrix responsible for quantum coherence can also be controlled via driving the second qubit, i.e., quantum coherence can be enhanced by appropriate choice of the bi-harmonic signal. Such a dynamic synchronization of two differently driven qubits has an analogy with harmonic mixing of Brownian particles forced by two signals through a substrate. Nevertheless, the quantum synchronization in two qubits occurs due to multiplicative coupling of signals in the qubits rather than via a nonlinear harmonic mixing for a classical nano-particle.



rate research

Read More

We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as non positive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. We conclude that the dynamics is a quantum element of NMR quantum information processing. There are two limits where our quantum evolution coincide with the classical one: the short time limit before spin-spin interaction sets in and the long time limit when phase diffusion is incorporated.
86 - Chaitanya Joshi 2016
We theoretically investigate a possibility to establish multi-qubit quantum correlations in one-dimensional chains of qubits. We combine a reservoir engineering strategy with coherent dynamics to generate multi-qubit entangled states. We find that an interplay between the coherent and incoherent dynamics result in the generation of stable (time-independent) many-body entangled steady states. Our results will be relevant in the context of the dissipative generation of quantum states, with applications in short-distance quantum computation and for exploring the emergence of collective phenomena in many-body open quantum systems.
There are well-known protocols for performing CNOT quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and resonators coupled by more complicated and less symmetric interactions. Here we consider a widely applicable model of weakly but otherwise arbitrarily coupled two-level systems, and use quantum gate design techniques to derive a simple and intuitive CNOT construction. Useful variations and extensions of the solution are given for common special cases.
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents $I_mathrm{p}$. Here, we examine an alternative approach, using qubits with smaller $I_mathrm{p}$ and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small ($sim 50~mathrm{nA}$) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.
We study the quantum synchronization between a pair of two-level systems inside two coupled cavities. By using a digital-analog decomposition of the master equation that rules the system dynamics, we show that this approach leads to quantum synchronization between both two-level systems. Moreover, we can identify in this digital-analog block decomposition the fundamental elements of a quantum machine learning protocol, in which the agent and the environment (learning units) interact through a mediating system, namely, the register. If we can additionally equip this algorithm with a classical feedback mechanism, which consists of projective measurements in the register, reinitialization of the register state and local conditional operations on the agent and environment subspace, a powerful and flexible quantum machine learning protocol emerges. Indeed, numerical simulations show that this protocol enhances the synchronization process, even when every subsystem experience different loss/decoherence mechanisms, and give us the flexibility to choose the synchronization state. Finally, we propose an implementation based on current technologies in superconducting circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا