Do you want to publish a course? Click here

An Overview of Neutrino Mixing

94   0   0.0 ( 0 )
 Added by Guido Altarelli
 Publication date 2012
  fields
and research's language is English
 Authors G. Altarelli




Ask ChatGPT about the research

We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large $theta_{13}$, possible non maximal $theta_{23}$, approaching sensitivity on $delta_{CP}$) and their implications on models of neutrino mixing. The new data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the lepton sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups.



rate research

Read More

We propose a model-independent analysis of the neutrino mass matrix through an expansion in terms of the eigenvectors defining the lepton mixing matrix, which we show can be parametrized as small perturbations of the tribimaximal mixing eigenvectors. This approach proves to be powerful and convenient for some aspects of lepton mixing, in particular when studying the sensitivity of the mass matrix elements to departures from their tribimaximal form. In terms of the eigenvector decomposition, the neutrino mass matrix can be understood as originating from a tribimaximal dominant structure with small departures determined by data. By implementing this approach to cases when the neutrino masses originate from different mechanisms, we show that the experimentally observed structure arises very naturally. We thus claim that the observed deviations from the tribimaximal mixing pattern might be interpreted as a possible hint of a ``hybrid nature of the neutrino mass matrix.
Neutrinos produced during a supernova explosion induce reactions on abundant nuclei in the outer stellar shells and contribute in this way to the synthesis of the elements in the Universe. This neutrino nucleosynthesis process has been identified as an important contributor to the origin of $^7$Li, $^{11}$B,$^{19}$F, $^{138}$La, and $^{180}$Ta, but also to the long-lived radionuclides $^{22}$Na and $^{26}$Al, which are both key isotopes for $gamma$-ray astronomy. The manuscript summarizes the recent progress achieved in simulations of neutrino nucleosynthesis.
118 - Yoni BenTov , Xiao-Gang He , 2012
The A4 x U(1) flavor model of He, Keum, and Volkas is extended to provide a minimal modification to tribimaximal mixing that accommodates a nonzero reactor angle theta13 ~ 0.1. The sequestering problem is circumvented by forbidding superheavy scales and large coupling constants which would otherwise generate sizable RG flows. The model is compatible with (but does not require) a stable or metastable dark matter candidate in the form of a complex scalar field with unit charge under a discrete subgroup Z4 of the U(1) flavor symmetry.
66 - Xinyi Zhang 2015
We build an $S_4$ model for neutrino masses and mixings based on the self-complementary (SC) neutrino mixing pattern. The SC mixing is constructed from the self-complementarity relation plus $delta_{rm CP}=-frac{pi}{2}$. We elaborately construct the model at a percent level of accuracy to reproduce the structure given by the SC mixing. After performing a numerical study on the models parameter space, we find that in the case of normal ordering, the model can give predictions on the observables that are compatible with their $3sigma$ ranges, and give predictions for the not-yet observed quantities like the lightest neutrino mass $m_1in [0.003,0.010]$ eV and the Dirac CP violating phase $delta_{rm CP}in[256.72^circ,283.33^circ]$.
134 - H. Fritzsch 2009
We study a model for the mass matrices of the leptons. We are ablte to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mxiing angles and can predict the masses of the neutrinos. We find a normal hierarchy -the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and of the neutrinos. We find 38 degrees, consistent with the experiments. The mixing element, connecting the first neutrino with the electron, is found to be 0.05.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا