Do you want to publish a course? Click here

Spin liquid behaviour in Jeff=1/2 triangular lattice Ba3IrTi2O9

132   0   0.0 ( 0 )
 Added by Tusharkanti Dey
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35K inspite of a strong magnetic coupling as evidenced by a large Curie-Weiss temperature=-130K. The magnetic heat capacity follows a power law at low temperature. Our measurements suggest that Ba3IrTi2O9 is a 5d, Ir-based (Jeff=1/2), quantum spin liquid on a 2D triangular lattice.



rate research

Read More

We study the spin-$1/2$ Heisenberg model on the triangular lattice with the antiferromagnetic first ($J_1$) and second ($J_2$) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation function, we find a $120^{circ}$ magnetic order phase for $J_2 lesssim 0.07 J_1$ and a stripe antiferromagnetic phase for $J_2 gtrsim 0.15 J_1$. Between these two phases, we identify a spin liquid region characterized by the exponential decaying spin and dimer correlations, as well as the large spin singlet and triplet excitation gaps on finite-size systems. We find two near degenerating ground states with distinct properties in two sectors, which indicates more than one spin liquid candidates in this region. While the sector with spinon is found to respect the time reversal symmetry, the even sector without a spinon breaks such a symmetry for finite-size systems. Furthermore, we detect the signature of the fractionalization by following the evolution of different ground states with inserting spin flux into the cylinder system. Moreover, by tuning the anisotropic bond coupling, we explore the nature of the spin liquid phase and find the optimal parameter region for the gapped $Z_2$ spin liquid.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high temperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
Platelike high-quality NaYbS$_{2}$ rhombohedral single crystals with lateral dimensions of a few mm have been grown and investigated in great detail by bulk methods like magnetization and specific heat, but also by local probes like nuclear magnetic resonance (NMR), electron-spin resonance (ESR), muon-spin relaxation ($mu$SR), and inelastic neutron scattering (INS) over a wide field and temperature range. Our single-crystal studies clearly evidence a strongly anisotropic quasi-2D magnetism and an emerging spin-orbit entangled $S=1/2$ state of Yb towards low temperatures together with an absence of long-range magnetic order down to 260~mK. In particular, the clear and narrow Yb ESR lines together with narrow $^{23}$Na NMR lines evidence an absence of inherent structural distortions in the system, which is in strong contrast to the related spin-liquid candidate YbMgGaO$_{4}$ falling within the same space group $Roverline{3}m$. This identifies NaYbS$_{2}$ as a rather pure spin-1/2 triangular lattice magnet and a new putative quantum spin liquid.
We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infinitely long cylinder, we find unambiguous evidence for gapless $U(1)$ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps and clearly shows gapless behavior at the expected wave-vectors. Using the DMRG transfer matrix, the low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the predicted universal response under the flux insertion.
138 - Ryui Kaneko , Satoshi Morita , 2014
We numerically study the Heisenberg models on triangular lattices by extending it from the simplest equilateral lattice with only the nearest-neighbor exchange interaction. We show that, by including an additional weak next-nearest-neighbor interaction, a quantum spin-liquid phase is stabilized against the antiferromagnetic order. The spin gap (triplet excitation gap) and spin correlation at long distances decay algebraically with increasing system size at the critical point between the antiferromagnetic phase and the spin-liquid phase. This algebraic behavior continues in the spin-liquid phase as well, indicating the presence of an unconventional critical (algebraic spin-liquid) phase characterized by the dynamical and anomalous critical exponents $z+etasim1$. Unusually small triplet and singlet excitation energies found in extended points of the Brillouin zone impose constraints on this algebraic spin liquid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا