Do you want to publish a course? Click here

On the magnetic quenching of mean-field effects in supersonic interstellar turbulence

130   0   0.0 ( 0 )
 Added by Oliver Gressel
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The emergence of large-scale magnetic fields observed in the diffuse interstellar medium is explained by a turbulent dynamo. The underlying transport coefficients have previously been extracted from numerical simulations. So far, this was restricted to the kinematic regime, but we aim to extend our analysis into the realm of dynamically important fields. This marks an important step on which derived mean-field models rely to explain observed equipartition strength fields. As in previous work, we diagnose turbulent transport coefficients by means of the test-field method. We derive quenching functions for the dynamo {alpha} effect, diamagnetic pumping, and turbulent diffusivity, which are compared with theoretical expectations. At late times, we observe the suppression of the vertical wind. Because this potentially affects the removal of small-scale magnetic helicity, new concerns arise about circumventing constraints imposed by the conservation of magnetic helicity at high magnetic Reynolds numbers. While present results cannot safely rule out this possibility, the issue only becomes important at late stages and is absent when the dynamo is quenched by the wind itself.



rate research

Read More

The interstellar medium of the Milky Way and nearby disk galaxies harbours large-scale coherent magnetic fields of Microgauss strength, that can be explained via the action of a mean-field dynamo. As in our previous work, we aim to quantify dynamo effects that are self-consistently emerging in realistic direct magnetohydrodynamic simulations, but we generalise our approach to the case of a non-local (non-instantaneous) closure relation, described by a convolution integral in space (time). To this end, we leverage our comprehensive simulation framework for the supernova-regulated turbulent multi-phase interstellar medium. By introducing spatially (temporally) modulated mean fields, we extend the previously used test-field method to the spectral realm -- providing the Fourier representation of the convolution kernels. The resulting spectra of the dynamo mean-field coefficients that we obtain broadly match expectations and allow to rigorously constrain the degree of scale separation in the Galactic dynamo. A surprising result is found for the diamagnetic pumping term, which increases in amplitude when going to smaller scales. Our results amount to the most comprehensive description of dynamo mean-field effects in the Galactic context to date. Surveying the relevant parameter space and quenching behaviour, this will ultimately enable the development of assumption-free sub-grid prescriptions for otherwise unresolved global galaxy simulations.
The rich structure that we observe in molecular clouds is due to the interplay between strong magnetic fields and supersonic (turbulent) velocity fluctuations. The velocity fluctuations interact with the magnetic field, causing it too to fluctuate. Using numerical simulations, we explore the nature of such magnetic field fluctuations, $vec{delta B}$, over a wide range of turbulent Mach numbers, $mathcal{M} = 2 - 20$ (i.e., from weak to strong compressibility), and Alfven Mach numbers, $mathcal{M}_{text{A}0} = 0.1 - 100$ (i.e., from strong to weak magnetic mean fields, $B_0$). We derive a compressible quasi-static fluctuation model from the magnetohydrodynamical (MHD) equations and show that velocity gradients parallel to the mean magnetic field give rise to compressible modes in sub-Alfvenic flows, which prevents the flow from becoming two-dimensional, as is the case in incompressible MHD turbulence. We then generalise an analytical model for the magnitude of the magnetic fluctuations to include $mathcal{M}$, and find $|vec{delta B}| = delta B = c_ssqrt{pirho_0}mathcal{M}mathcal{M}_{text{A}0}$, where $c_s$ is the sound speed and $rho_0$ is the mean density of gas. This new relation fits well in the strong $B$-field regime. We go on to study the anisotropy between the perpendicular ($ B_{perp}$) and parallel ($ B_{parallel}$) fluctuations and the mean-normalised fluctuations, which we find follow universal scaling relations, invariant of $mathcal{M}$. We provide a detailed analysis of the morphology for the $delta B_{perp}$ and $delta B_{parallel}$ probability density functions and find that eddies aligned with $B_0$ cause parallel fluctuations that reduce $B_{parallel}$ in the most anisotropic simulations. We discuss broadly the implications of our fluctuation models for magnetised gases in the interstellar medium.
We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number ($mathrm{Rm} approx 45$) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields.
60 - Brant Robertson 2018
The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star forming clouds. This work presents a simple model for the structure of dense regions in turbulence in which the density distribution behind isothermal shocks originates from rough hydrostatic balance between the pressure gradient behind the shock and its deceleration from ram pressure applied by the background fluid. Using simulations of supersonic isothermal turbulence and idealized waves moving through a background medium, we show that the structural properties of dense, shocked regions broadly agree with our analytical model. Our work provides a new conceptual picture for describing the dense regions, which complements theoretical efforts to understand the bulk statistical properties of turbulence and attempts to model the more complex features of star forming clouds like magnetic fields, self-gravity, or radiative properties.
We study density fluctuations in supersonic turbulence using both theoretical methods and numerical simulations. A theoretical formulation is developed for the probability distribution function (PDF) of the density at steady state, connecting it to the conditional statistics of the velocity divergence. Two sets of numerical simulations are carried out, using either a Riemann solver to evolve the Euler equations or a finite-difference method to evolve the Navier-Stokes (N-S) equations. After confirming the validity of our theoretical formulation with the N-S simulations, we examine the effects of dynamical processes on the PDF, showing that the nonlinear term in the divergence equation amplifies the right tail of the PDF and reduces the left one, the pressure term reduces both the right and left tails, and the viscosity term, counter-intuitively, broadens the right tail of the PDF. Despite the inaccuracy of the velocity divergence from the Riemann runs, as found in our previous work, we show that the density PDF from the Riemann runs is consistent with that from the N-S runs. Taking advantage of their much higher effective resolution, we then use the Riemann runs to study the dependence of the PDF on the Mach number, $mathcal{M}$, up to $mathcal{M}sim30$. The PDF width, $sigma_{s}$, follows the relation $sigma_{s}^2 = ln (1+b^2 {mathcal M}^2)$, with $bapprox0.38$. However, the PDF exhibits a negative skewness that increases with increasing $mathcal{M}$, so much of the growth of $sigma_{s}$ is accounted for by the growth of the left PDF tail, while the growth of the right tail tends to saturate. Thus, the usual prescription that combines a lognormal shape with the standard variance-Mach number relation greatly overestimates the right PDF tail at large $mathcal{M}$, which may have a significant impact on theoretical models of star formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا