No Arabic abstract
We have conducted the first blind HI survey covering 480 deg^2 and a heliocentric velocity range from 300-1900 km/s to investigate the HI content of the nearby spiral-rich Ursa Major region and to look for previously uncatalogued gas-rich objects. Here we present the catalog of HI sources. The HI data were obtained with the 4-beam receiver mounted on the 76.2-m Lovell telescope (FWHM 12 arcmin) at the Jodrell Bank Observatory (UK) as part of the HI Jodrell All Sky Survey (HIJASS). We use the automated source finder DUCHAMP and identify 166 HI sources in the data cubes with HI masses in the range of 10^7 - 10^{10.5} M_sun. Our Ursa Major HI catalogue includes 10 first time detections in the 21-cm emission line. We identify optical counterparts for 165 HI sources (99 per cent). For 54 HI sources (33 per cent) we find numerous optical counterparts in the HIJASS beam, indicating a high density of galaxies and likely tidal interactions. Four of these HI systems are discussed in detail. We find only one HI source (1 per cent) without a visible optical counterpart out of the 166 HI detections. Green Bank Telescope (FWHM 9 arcmin) follow-up observations confirmed this HI source and its HI properties. The nature of this detection is discussed and compared to similar sources in other HI surveys.
We identify gravitationally bound structures in the Ursa Major region using positions, velocities and photometry from the Sloan Digital Sky Survey (SDSS DR7) and the Third Reference Catalogue of Bright Galaxies (RC3). A friends-of-friends algorithm is extensively tested on mock galaxy lightcones and then implemented on the real data to determine galaxy groups whose members are likely to be physically and dynamically associated with one another. We find several galaxy groups within the region that are likely bound to one another and in the process of merging. We classify 6 galaxy groups as the Ursa Major `supergroup, which are likely to merge and form a poor cluster with a mass of ~8x10^13 Msun. Furthermore, the Ursa Major supergroup as a whole is likely bound to the Virgo cluster, which will eventually form an even larger system in the context of hierarchical structure formation. [abridged]
Results are presented of the first blind HI survey of the M81 group of galaxies. The data were taken as part of the HI Jodrell All Sky Survey (HIJASS). The survey reveals several new aspects to the complex morphology of the HI distribution in the group. All four of the known dwarf irregular (dIrr) galaxies close to M81 can be unambiguously seen in the HIJASS data. Each forms part of the complex tidal structure in the area. We suggest that at least three of these galaxies may have formed recently from the tidal debris in which they are embedded. The structure connecting M81 to NGC2976 is revealed as a single tidal bridge of mass approx. 2.1 x 10^8 Msol and projected spatial extent approx. 80 kpc. Two `spurs of HI projecting from the M81 complex to lower declinations are traced over a considerably larger spatial and velocity extent than by previous surveys. The dwarf elliptical (dE) galaxies BK5N and Kar 64 lie at the spatial extremity of one of these features and appear to be associated with it. We suggest that these may be the remnants of dIrrs which has been stripped of gas and transmuted into dEs by close gravitational encounters with NGC3077. The nucleated dE galaxy Kar 61 is unambiguously detected in HI for the first time and has an HI mass of approx.10^8 Msol, further confirming it as a dE/dIrr transitional object. HIJASS has revealed one new possible group member, HIJASS J1021+6842. This object contains approx. 2 x 10^7 Msol of HI and lies approx.105arcmin from IC2574. It has no optical counterpart on the Digital Sky Survey.
We have performed a systematic study of several regions in the sky where the number of galaxies exhibiting star formation (SF) activity is greater than average. We used Kiso ultraviolet-excess galaxies (KUGs) as our SF-enhanced sample. By statistically comparing the KUG and non-KUG distributions, we discovered four KUG-rich regions with a size of $sim 10^circ times 10^circ$. One of these regions corresponds spatially to a filament of length $sim 60 h^{-1}$ Mpc in the Lynx-Ursa Major region ($alpha sim 9^{rm h} - 10^{rm h}, delta sim 42^circ - 48^circ$). We call this ``the Lynx-Ursa Major (LUM) filament. We obtained $V(RI)_{rm C}$ surface photometry of 11 of the KUGs in the LUM filament and used these to investigate the integrated colors, distribution of SF regions, morphologies, and local environments. We found that these KUGs consist of distorted spiral galaxies and compact galaxies with blue colors. Their star formation occurs in the entire disk, and is not confined to just the central regions. The colors of the SF regions imply that active star formation in the spiral galaxies occurred $10^{7 - 8}$ yr ago, while that of the compact objects occurred $10^{6-7}$ yr ago. Though the photometric characteristics of these KUGs are similar to those of interacting galaxies or mergers, most of these KUGs do not show direct evidence of merger processes.
We present the first interferometric blind HI survey of the Fornax galaxy cluster, which covers an area of 15 deg$^2$ out to the cluster $R_{vir}$. The survey has a resolution of 67x95 and 6.6 km$s^{-1}$ with a 3$sigma$ sensitivity of N(HI)~2x10$^{19}$ cm$^{-2}$ and MHI 2x10$^7$ M$_odot$. We detect 16 galaxies out of 200 spectroscopically confirmed Fornax cluster members. The detections cover ~3 orders of magnitude in HI mass, from 8x10$^6$ to 1.5x10$^{10}$ M$_odot$. They avoid the central, virialised region of the cluster both on the sky and in projected phase-space, showing that they are recent arrivals and that, in Fornax, HI is lost within a crossing time, ~2 Gyr. Half of these galaxies exhibit a disturbed HI morphology, including several cases of asymmetries, tails, offsets between HI and optical centres, and a case of a truncated HI disc suggesting that they have been interacting within or on their way to Fornax. Our HI detections are HI-poorer and form stars at a lower rate than non-cluster galaxies in the same $M_star$ range. Low mass galaxies are more strongly affected throughout their infall towards the cluster. The MHI/$M_star$ ratio of Fornax galaxies is comparable to that in the Virgo cluster. At fixed $M_star$, our HI detections follow the non-cluster relation between MHI and the star formation rate, and we argue that this implies that so far they have lost their HI on a timescale $gtrsim$1-2 Gyr. Deeper inside the cluster HI removal is likely to proceed faster, as confirmed by a population of HI-undetected but H$_2$-detected star-forming galaxies. Based on ALMA data, we find a large scatter in H$_2$-to-HI mass ratio, with several galaxies showing an unusually high ratio that is probably caused by faster HI removal. We identify an HI-rich subgroup of possible interacting galaxies dominated by NGC 1365, where pre-processing is likey to have taken place.
The Arecibo Ultra Deep Survey (AUDS) combines the unique sensitivity of the telescope with the wide field of the Arecibo L-band Feed Array (ALFA) to directly detect 21cm HI emission from galaxies at distances beyond the local Universe bounded by the lower frequency limit of ALFA (z=0.16). AUDS has collected 700 hours of integration time in two fields with a combined area of 1.35 square degrees. In this paper we present data from 60% of the total survey, corresponding to a sensitivity level of 80 micro-Jy. We discuss the data reduction, the search for galaxies, parametrisation, optical identification and completeness. We detect 102 galaxies in the mass range of log M_HI/M_sun-2log h=5.6-10.3. We compute the HI mass function (HIMF) at the highest redshifts so far measured. A fit of a Schechter function results in alpha=-1.37+-0.03, Phi=(7.72+-1.4)*10^3 h^3/Mpc^3 and log M_HI/M_sun=9.75+-0.041+2log h. Using the measured HIMF, we find a cosmic HI density of Omega_HI=(2.33+-0.07)*10^-4/h for the sample z=0.065. We discuss further uncertainties arising from cosmic variance. Because of its depth, AUDS is the first survey that can determine parameters for the HI mass function in independent redshift bins from a single homogeneous data set. The results indicate little evolution of the co-moving mass function and Omega_HI within this redshift range. We calculate a weighted average for Omega_HI in the range $0<z<0.2$, combining the results from AUDS as well as results from other 21cm surveys and stacking, finding a best combined estimate of Omega_HI=(2.63+-0.10)*10-4/h.