Do you want to publish a course? Click here

A Refined Estimate of the Ionizing Emissivity from Galaxies at z~3: Spectroscopic Follow-up in the SSA22a Field

114   0   0.0 ( 0 )
 Added by Daniel Nestor
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the contribution of star-forming galaxies to the ionizing background at z~3, building on previous work based on narrowband (NB3640) imaging in the SSA22a field. We use new Keck/LRIS spectra of Lyman break galaxies (LBGs) and narrowband-selected Lya emitters (LAEs) to measure redshifts for 16 LBGs and 87 LAEs at z>3.055, such that our NB3640 imaging probes the Lyman-continuum (LyC) region. When we include the existing set of spectroscopically-confirmed LBGs, our total sample with z>3.055 consists of 41 LBGs and 91 LAEs, of which nine LBGs and 20 LAEs are detected in our NB3640 image. With our combined imaging and spectroscopic data sets, we critically investigate the origin of NB3640 emission for detected LBGs and LAEs. We remove from our samples 3 LBGs and 3 LAEs with spectroscopic evidence of contamination of their NB3640 flux by foreground galaxies, and statistically model the effects of additional, unidentified foreground contaminants. The resulting contamination and LyC-detection rates, respectively, are 62 +/-13% and 8 +/-3% for our LBG sample, and 47 +/-10% and 12 +/-2% for our LAE sample. The corresponding ratios of non-ionizing UV to LyC flux-density, corrected for intergalactic medium (IGM) attenuation, are 18.0 +34.8/-7.4 for LBGs, and 3.7 +2.5/-1.1 for LAEs. We use these ratios to estimate the total contribution of star-forming galaxies to the ionizing background and the hydrogen photoionization rate in the IGM, finding values larger than, but consistent with, those measured in the Lya forest. Finally, the measured UV to LyC flux-density ratios imply model-dependent LyC escape fractions of f_{esc}^{LyC} ~ 5-7% for our LBG sample and f_{esc}^{LyC} ~ 10-30% for our fainter LAE sample.



rate research

Read More

Modelling reionization often requires significant assumptions about the properties of ionizing sources. Here, we infer the total output of hydrogen-ionizing photons (the ionizing emissivity, $dot{N}_textrm{ion}$) at $z=4-14$ from current reionization constraints, being maximally agnostic to the properties of ionizing sources. We use a Bayesian analysis to fit for a non-parametric form of $dot{N}_textrm{ion}$, allowing us to flexibly explore the entire prior volume. We infer a declining $dot{N}_textrm{ion}$ with redshift at $z>6$, which can be used as a benchmark for reionization models. Model-independent reionization constraints from the CMB optical depth and Ly$alpha$ and Ly$beta$ forest dark pixel fraction produce $dot{N}_textrm{ion}$ evolution ($dlog_{10}dot{N}_textrm{ion}/dz|_{z=6rightarrow8} = -0.31pm0.35$ dex) consistent with the declining UV luminosity density of galaxies, assuming constant ionizing photon escape fraction and efficiency. Including measurements from Ly$alpha$ damping of galaxies and quasars produces a more rapid decline: $dlog_{10}dot{N}_textrm{ion}/dz|_{z=6rightarrow8} =-0.44pm0.22$ dex, steeper than the declining galaxy luminosity density (if extrapolated beyond $M_mathrm{UV} lesssim -13$), and constrains the mid-point of reionization to $z = 6.93pm0.14$.
We present the analysis and results of a spectroscopic follow-up program of a mass-selected sample of six galaxies at 3 < z < 4 using data from Keck-NIRSPEC and VLT-Xshooter. We confirm the z > 3 redshifts for half of the sample through the detection of strong nebular emission lines, and improve the zphot accuracy for the remainder of the sample through the combination of photometry and spectra. The modeling of the emission-line-corrected spectral energy distributions (SEDs) adopting improved redshifts confirms the very large stellar masses of the sample (M_* ~ 1.5-4 x 10^11 Msun) in the first 2 Gyrs of cosmic history, with a diverse range in stellar ages, star formation rates and dust content. From the analysis of emission line luminosities and widths, and far-infrared (FIR) fluxes we confirm that >80% of the sample are hosts to luminous hidden active galactic nuclei (AGNs), with bolometric luminosities of ~10^(44-46) erg/s. We find that the MIPS 24um photometry is largely contaminated by AGN continuum, rendering the SFRs derived using only 24um photometry to be severely overestimated. By including the emission from the AGN in the modeling of the UV-to-FIR SEDs, we confirm that the presence of the AGN does not bias considerably the stellar masses (< 0.3 dex at 1sigma). We show evidence for a rapid increase of the AGN fraction from ~30% to ~60-100% over the 1 Gyr between z~2 and z~3. Although we cannot exclude some enhancement of the AGN fraction for our sample due to selection effects, the small measured [OIII] contamination to the observed K-band fluxes suggests that our sample is not significantly biased toward massive galaxies hosting AGNs.
In this paper, we present a derivation of the rest-frame 1400A luminosity function (LF) at redshift six from a new application of the maximum likelihood method by exploring the five deepest HST/ACS fields, i.e., the HUDF, two UDF05 fields, and two GOODS fields. We work on the latest improved data products, which makes our results more robust than those of previous studies. We use un-binned data and thereby make optimal use of the information contained in the dataset. We focus on the analysis to a magnitude limit where the completeness is larger than 50% to avoid possibly large errors in the faint end slope that are difficult to quantify. We also take into account scattering in and out of the dropout sample due to photometric errors by defining for each object a probability that it belongs to the dropout sample. We find the best fit Schechter parameters to the z~6 LF are: alpha = 1.87 +/- 0.14, M* = -20.25 +/- 0.23, and phi*=1.77^{+0.62}_{-0.49} * 10^{-3} Mpc^{-3}. Such a steep slope suggests that galaxies, especially the faint ones, are possibly the main sources of ionizing photons in the universe at redshift six. We also combine results from all studies at z~6 to reach an agreement in 95% confidence level that -20.45<M*<-20.05 and -1.90<alpha<-1.55. The luminosity density has been found not to evolve significantly between z~6 and z~5, but considerable evolution is detected from z~6 to z~3.
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a program dedicated to the homogeneous and complete spectroscopic follow-up of X-ray AGN and galaxy clusters over a large area ($sim$7500 deg$^2$) of the extragalactic sky. SPIDERS is part of the SDSS-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the Time-Domain Spectroscopic Survey (TDSS). This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray selected, massive ($sim 10^{14}$ to $10^{15}~M_{odot}$) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise ($Delta_z sim 0.001$) redshifts for 4,000-5,000 of these systems out to $z sim 0.6$. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters ($0.031 < z < 0.658$), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion ($L_X-sigma$) relation and the building of stacked phase-space diagrams.
We compute the escape of ionizing radiation from galaxies in the redshift interval z=4-10, i.e., during and after the epoch of reionization, using a high-resolution set of galaxies, formed in fully cosmological simulations. The simulations invoke early, energetic feedback, and the galaxies evolve into a realistic population at z=0. Our galaxies cover nearly four orders of magnitude in masses (10^{7.8}-10^{11.5}msun) and more than five orders in star formation rates (10^{-3.5}-10^{1.7}msunyr^{-1}), and we include an approximate treatment of dust absorption. We show that the source-averaged Lyman-limit escape fraction at z=10.4 is close to 80% declining monotonically with time as more massive objects build up at lower redshifts. Although the amount of dust absorption is uncertain to 1-1.5 dex, it is tightly correlated with metallicity; we find that dust is unlikely to significantly impact the observed UV output. These results support reionization by stellar radiation from low-luminosity dwarf galaxies and are also compatible with Lyman continuum observations and theoretical predictions at zsim3-4.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا