Waves in the Skyrme--Faddeev model and integrable reductions


Abstract in English

In the present article we show that the Skyrme--Faddeev model possesses nonlinear wave solutions, which can be expressed in terms of elliptic functions. The Whitham averaging method has been exploited in order to describe slow deformation of periodic wave states, leading to a quasi-linear system. The reduction to general hydrodynamic systems have been considered and it is compared with other integrable reductions of the system.

Download