In the present article we show that the Skyrme--Faddeev model possesses nonlinear wave solutions, which can be expressed in terms of elliptic functions. The Whitham averaging method has been exploited in order to describe slow deformation of periodic wave states, leading to a quasi-linear system. The reduction to general hydrodynamic systems have been considered and it is compared with other integrable reductions of the system.
Based on the notion of Darboux-KP chain hierarchy and its invariant submanifolds we construct some class of constraints compatible with integrable lattices. Some simple examples are given.
It was observed by Tod and later by Dunajski and Tod that the Boyer-Finley (BF) and the dispersionless Kadomtsev-Petviashvili (dKP) equations possess solutions whose level surfaces are central quadrics in the space of independent variables (the so-called central quadric ansatz). It was demonstrated that generic solutions of this type are described by Painleve equations PIII and PII, respectively. The aim of our paper is threefold: -- Based on the method of hydrodynamic reductions, we classify integrable models possessing the central quadric ansatz. This leads to the five canonical forms (including BF and dKP). -- Applying the central quadric ansatz to each of the five canonical forms, we obtain all Painleve equations PI - PVI, with PVI corresponding to the generic case of our classification. -- We argue that solutions coming from the central quadric ansatz constitute a subclass of two-phase solutions provided by the method of hydrodynamic reductions.
Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systInterpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level. ems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level.
A class of multidimensional integrable hierarchies connected with commutation of general (unreduced) (N+1)-dimensional vector fields containing derivative over spectral variable is considered. They are represented in the form of generating equation, as well as in the Lax-Sato form. A dressing scheme based on nonlinear vector Riemann problem is presented for this class. The hierarchies connected with Manakov-Santini equation and Dunajski system are considered as illustrative examples.
In this paper we investigate integrable models from the perspective of information theory, exhibiting various connections. We begin by showing that compressible hydrodynamics for a one-dimesional isentropic fluid, with an appropriately motivated information theoretic extension, is described by a general nonlinear Schrodinger (NLS) equation. Depending on the choice of the enthalpy function, one obtains the cubic NLS or other modified NLS equations that have applications in various fields. Next, by considering the integrable hierarchy associated with the NLS model, we propose higher order information measures which include the Fisher measure as their first member. The lowest members of the hiearchy are shown to be included in the expansion of a regularized Kullback-Leibler measure while, on the other hand, a suitable combination of the NLS hierarchy leads to a Wootters type measure related to a NLS equation with a relativistic dispersion relation. Finally, through our approach, we are led to construct an integrable semi-relativistic NLS equation.