Hamiltonian dynamics of Lovelock black holes with spherical symmetry


Abstract in English

We consider spherically symmetric black holes in generic Lovelock gravity. Using geometrodynamical variables we do a complete Hamiltonian analysis, including derivation of the super-Hamiltonian and super-momentum constraints and verification of suitable boundary conditions for asymptotically flat black holes. Our analysis leads to a remarkably simple fully reduced Hamiltonian for the vacuum gravitational sector that provides the starting point for the quantization of Lovelock block holes. Finally, we derive the completely reduced equations of motion for the collapse of a spherically symmetric charged, self-gravitating complex scalar field in generalized flat slice (Painlev{e}-Gullstrand) coordinates.

Download