No Arabic abstract
Research during the last decade demonstrates that effects originating on the Planck scale are currently being tested in multiple observational contexts. In this review we discuss quantum gravity phenomenological models and their possible links to loop quantum gravity. Particle frameworks, including kinematic models, broken and deformed Poincare symmetry, non-commutative geometry, relative locality and generalized uncertainty principle, and field theory frameworks, including Lorentz violating operators in effective field theory and non-commutative field theory, are discussed. The arguments relating loop quantum gravity to models with modified dispersion relations are reviewed, as well as, arguments supporting the preservation of local Lorentz invariance. The phenomenology related to loop quantum cosmology is briefly reviewed, with a focus on possible effects that might be tested in the near future. As the discussion makes clear, there remains much interesting work to do in establishing the connection between the fundamental theory of loop quantum gravity and these specific phenomenological models, in determining observational consequences of the characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted. characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted.
A simple model is constructed which allows to compute modified dispersion relations with effects from loop quantum gravity. Different quantization choices can be realized and their effects on the order of corrections studied explicitly. A comparison with more involved semiclassical techniques shows that there is agreement even at a quantitative level. Furthermore, by contrasting Hamiltonian and Lagrangian descriptions we show that possible Lorentz symmetry violations may be blurred as an artifact of the approximation scheme. Whether this is the case in a purely Hamiltonian analysis can be resolved by an improvement in the effective semiclassical analysis.
In this proceedings for the MG14 conference, we discuss the construction of a phenomenology of Planck-scale effects in curved spacetimes, underline a few open issues and describe some perspectives for the future of this research line.
We discuss constraint structure of extended theories of gravitation (also known as f(R) theories) in the vacuum selfdual formulation introduced in ref. [1].
We explicitly construct and characterize all possible independent loop states in 3+1 dimensional loop quantum gravity by regulating it on a 3-d regular lattice in the Hamiltonian formalism. These loop states, characterized by the (dual) angular momentum quantum numbers, describe SU(2) rigid rotators on the links of the lattice. The loop states are constructed using the Schwinger bosons which are harmonic oscillators in the fundamental (spin half) representation of SU(2). Using generalized Wigner Eckart theorem, we compute the matrix elements of the volume operator in the loop basis. Some simple loop eigenstates of the volume operator are explicitly constructed.
Violations of spacetime symmetries have recently been identified as promising signatures for physics underlying the Standard Model. The present talk gives an overview over various topics in this field: The motivations for spacetime-symmetry research, including some mechanisms for Lorentz breaking, are reviewed. An effective field theory called the Standard-Model Extension (SME) for the description of the resulting low-energy effects is introduced, and some experimental tests of Lorentz and CPT invariance are listed.