Do you want to publish a course? Click here

Design and Performance of the GAMMA-400 Gamma-Ray Telescope for the Dark Matter Searches

356   0   0.0 ( 0 )
 Added by Nikolay Topchiev
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. The GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01 deg (E{gamma} > 100 GeV), the energy resolution ~1% (E{gamma} > 10 GeV), and the proton rejection factor ~10E6. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.



rate research

Read More

Our paper reviews the planned space-based gamma-ray telescope GAMMA-400 and evaluates in details its opportunities in the field of dark matter (DM) indirect searches. We estimated GAMMA-400 mean sensitivity to the diphoton DM annihilation cross section in the Galactic center for DM particle masses in the range of 1-500 GeV. We obtained the sensitivity gain at least by 1.2-1.5 times (depending on DM particle mass) with respect to the expected constraints from 12 years of observations by Fermi-LAT for the case of Einasto DM density profile. The joint analysis of the data from both telescopes may yield the gain up to 1.8-2.3 times. Thus the sensitivity reaches the level of annihilation cross section $langle sigma v rangle_{gammagamma}(m_chi=100~mbox{GeV})approx 10^{-28}$ cm$^3$/s. This will allow us to test the hypothesized narrow lines predicted by specific DM models, particularly the recently proposed pseudo-Goldstone boson DM model. We also considered the decaying DM - in this case the joint analysis may yield the sensitivity gain up to 1.1-2.0 times reaching the level of DM lifetime $tau_{gamma u}(m_chi=100~mbox{GeV}) approx 2cdot 10^{29}$ s. We estimated the GAMMA-400 sensitivity to axion-like particle (ALP) parameters by a potential observation of the supernova explosion in the Local Group. This is very sensitive probe of ALPs reaching the level of ALP-photon coupling constant $g_{agamma} sim 10^{-13}~mbox{GeV}^{-1}$ for ALP masses $m_a lesssim 1$ neV. We also calculated the sensitivity to ALPs by constraining the modulations in the spectra of the Galactic gamma-ray pulsars due to possible ALP-photon conversion. GAMMA-400 is expected to be more sensitive than the CAST helioscope for ALP masses $m_a approx (1-10)$ neV reaching $g_{agamma}^{min} approx 2cdot 10^{-11}~mbox{GeV}^{-1}$. Other potentially interesting targets and candidates are briefly considered too.
GAMMA-400 is a new space mission, designed as a dual experiment, capable to study both high energy gamma rays (from $sim$100 MeV to few TeV) and cosmic rays (electrons up to 20 TeV and nuclei up to $sim$10$^{15}$ eV). The full simulation framework of GAMMA-400 is based on the Geant4 toolkit. The details of the gamma-ray reconstruction pipeline in the pre-shower and calorimeter will be outlined. The performance of GAMMA-400 (PSF, effective area) have been obtained using this framework. The most updated results on them will be shown.
GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of dark matter particles, and to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to ~3000 GeV. Its angular resolution is ~0.01 deg(Eg > 100 GeV), and the energy resolution ~1% (Eg > 10 GeV). GAMMA-400 is planned to be launched on the Russian space platform Navigator in 2019. The GAMMA-400 perspectives in the search for dark matter in various scenarios are presented in this paper
The future space-based GAMMA-400 gamma-ray telescope will operate onboard the Russian astrophysical observatory in a highly elliptic orbit during 7 years to observe Galactic plane, Galactic Center, Fermi Bubbles, Crab, Vela, Cygnus X, Geminga, Sun, and other regions and measure gamma- and cosmic-ray fluxes. Observations will be performed in the point-source mode continuously for a long time (~100 days). GAMMA-400 will have the unprecedented angular and energy resolutions better than the space-based and ground-based gamma-ray telescopes by a factor of 5-10. Excellent separation of gamma rays from cosmic-ray background, as well as electrons + positrons from protons will allow us to measure gamma rays in the energy range from ~20 MeV to several TeV and cosmic-ray electrons + positrons up to several tens TeV. GAMMA-400 observations will permit to resolve gamma rays from annihilation or decay of dark matter particles, identify many discrete sources, clarify the structure of extended sources, specify the data on cosmic-ray electron + positron spectra.
The future GAMMA-400 space mission is aimed for the study of gamma rays in the energy range from ~20 MeV up to ~1 TeV. The observations will carry out with GAMMA-400 gamma-ray telescope installed on-board the Russian Space Observatory. We present the detailed description of the architecture and performances of scientific data acquisition system (SDAQ) developing by SRISA for the GAMMA-400 instrument. SDAQ provides the collection of the data from telescope detector subsystems (up to 100 GB per day), the preliminary processing of scientific information and its accumulation in mass memory, transferring the information from mass memory to the satellite high-speed radio line for its transmission to the ground station, the control and monitoring of the telescope subsystems. SDAQ includes special space qualified chipset designed by SRISA and has scalable modular net structure based on fast and high-reliable serial interfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا