Do you want to publish a course? Click here

A New Trinomial Recombination Tree Algorithm and Its Applications

107   0   0.0 ( 0 )
 Added by Peter C.L. Lin
 Publication date 2012
  fields Financial
and research's language is English




Ask ChatGPT about the research

A New Trinomial Recombination Tree Algorithm and Its Applications



rate research

Read More

123 - Young Shin Kim 2021
This paper proposes the sample path generation method for the stochastic volatility version of CGMY process. We present the Monte-Carlo method for European and American option pricing with the sample path generation and calibrate model parameters to the American style S&P 100 index options market, using the least square regression method. Moreover, we discuss path-dependent options such as Asian and Barrier options.
121 - Ben Boukai 2021
Following Boukai (2021) we present the Generalized Gamma (GG) distribution as a possible RND for modeling European options prices under Hestons (1993) stochastic volatility (SV) model. This distribution is seen as especially useful in situations in which the spots price follows a negatively skewed distribution and hence, Black-Scholes based (i.e. the log-normal distribution) modeling is largely inapt. We apply the GG distribution as RND to modeling current market option data on three large market-index ETFs, namely the SPY, IWM and QQQ as well as on the TLT (an ETF that tracks an index of long term US Treasury bonds). The current option chain of each of the three market-index ETFs shows of a pronounced skew of their volatility `smile which indicates a likely distortion in the Black-Scholes modeling of such option data. Reflective of entirely different market expectations, this distortion appears not to exist in the TLT option data. We provide a thorough modeling of the available option data we have on each ETF (with the October 15, 2021 expiration) based on the GG distribution and compared it to the option pricing and RND modeling obtained directly from a well-calibrated Hestons (1993) SV model (both theoretically and empirically, using Monte-Carlo simulations of the spots price). All three market-index ETFs exhibit negatively skewed distributions which are well-matched with those derived under the GG distribution as RND. The inadequacy of the Black-Scholes modeling in such instances which involve negatively skewed distribution is further illustrated by its impact on the hedging factor, delta, and the immediate implications to the retail trader. In contrast, for the TLT ETF, which exhibits no such distortion to the volatility `smile, the three pricing models (i.e. Hestons, Black-Scholes and Generalized Gamma) appear to yield similar results.
118 - Nicole El Karoui 2014
The purpose of this paper relies on the study of long term affine yield curves modeling. It is inspired by the Ramsey rule of the economic literature, that links discount rate and marginal utility of aggregate optimal consumption. For such a long maturity modelization, the possibility of adjusting preferences to new economic information is crucial, justifying the use of progressive utility. This paper studies, in a framework with affine factors, the yield curve given from the Ramsey rule. It first characterizes consistent progressive utility of investment and consumption, given the optimal wealth and consumption processes. A special attention is paid to utilities associated with linear optimal processes with respect to their initial conditions, which is for example the case of power progressive utilities. Those utilities are the basis point to construct other progressive utilities generating non linear optimal processes but leading yet to still tractable computations. This is of particular interest to study the impact of initial wealth on yield curves.
In this paper we propose two efficient techniques which allow one to compute the price of American basket options. In particular, we consider a basket of assets that follow a multi-dimensional Black-Scholes dynamics. The proposed techniques, called GPR Tree (GRP-Tree) and GPR Exact Integration (GPR-EI), are both based on Machine Learning, exploited together with binomial trees or with a closed formula for integration. Moreover, these two methods solve the backward dynamic programming problem considering a Bermudan approximation of the American option. On the exercise dates, the value of the option is first computed as the maximum between the exercise value and the continuation value and then approximated by means of Gaussian Process Regression. The two methods mainly differ in the approach used to compute the continuation value: a single step of binomial tree or integration according to the probability density of the process. Numerical results show that these two methods are accurate and reliable in handling American options on very large baskets of assets. Moreover we also consider the rough Bergomi model, which provides stochastic volatility with memory. Despite this model is only bidimensional, the whole history of the process impacts on the price, and handling all this information is not obvious at all. To this aim, we present how to adapt the GPR-Tree and GPR-EI methods and we focus on pricing American options in this non-Markovian framework.
201 - Hyukjae Park 2013
In this article, we show how the scaling symmetry of the SABR model can be utilized to efficiently price European options. For special kinds of payoffs, the complexity of the problem is reduced by one dimension. For more generic payoffs, instead of solving the 1+2 dimensional SABR PDE, it is sufficient to solve $N_V$ uncoupled 1+1 dimensional PDEs, where $N_V$ is the number of points used to discretize one dimension. Furthermore, the symmetry argument enables us to obtain prices of multiple options, whose payoffs are related to each other by convolutions, by valuing one of them. The results of the method are compared with the Monte Carlo simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا