Stochastic dynamical model of a growing network based on self-exciting point process


Abstract in English

We perform experimental verification of the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose citation network of Physics papers and traced citation history of 40,195 papers published in one year. Contrary to common belief, we found that citation dynamics of the individual papers follows the emph{superlinear} preferential attachment, with the exponent $alpha= 1.25-1.3$. Moreover, we showed that the citation process cannot be described as a memoryless Markov chain since there is substantial correlation between the present and recent citation rates of a paper. Basing on our findings we constructed a stochastic growth model of the citation network, performed numerical simulations based on this model and achieved an excellent agreement with the measured citation distributions.

Download