Do you want to publish a course? Click here

Engineering of nonclassical motional states in optomechanical systems

146   0   0.0 ( 0 )
 Added by Yu-Xi Liu
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single-photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.



rate research

Read More

We study self-oscillations of an optomechanical system, where coherent mechanical oscillations are induced by a driven optical or microwave cavity, for the case of an anharmonic mechanical oscillator potential. A semiclassical analytical model is developed to characterize the limit cycle for large mechanical amplitudes corresponding to a weak nonlinearity. As a result, we predict conditions to achieve subpoissonian phonon statistics in the steady state, indicating classically forbidden behavior. We compare with numerical simulations and find very good agreement. Our model is quite general and can be applied to other physical systems such as trapped ions or superconducting circuits.
123 - P. D. Nation 2013
Here we show that quantum states of a mechanical oscillator can be generated in an optomechanical analogue of the micromaser, in absence of any atom-like subsystem, thus exhibiting single-atom masing effects in a system composed solely of oscillator components. In the regime where the single-photon coupling strength is on the order of the cavity decay rate, a cavity mode with at most a single-excitation present gives rise to sub-Poissonian oscillator limit-cycles that generate quantum features in the steady state just above the renormalized cavity resonance frequency and mechanical sidebands. The merger of multiple stable limit-cycles markedly reduces these nonclassical signatures. Varying the cavity-resonator coupling strength, corresponding to the micromaser pump parameter, reveals transitions for the oscillator phonon number that are the hallmark of a micromaser. The connection to the micromaser allows for a physical understanding of how nonclassical states arise in this system, and how best to maximize these signatures for experimental observation.
We present a heralded state preparation scheme for driven nonlinear open quantum systems. The protocol is based on a continuous photon counting measurement of the systems decay channel. When no photons are detected for a period of time, the system has relaxed to a measurement-induced pseudo-steady state. We illustrate the protocol by the creation of states with a negative Wigner function in a Kerr oscillator, a system whose unconditional steady state is strictly positive.
533 - Peter Rabl 2011
We analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of photon blockade under single photon strong coupling conditions. We present an intuitive interpretation of this effect in terms of displaced oscillator states and derive analytic expressions for the cavity excitation spectrum and the two photon correlation function $g^{(2)}(0)$. Our results predict the appearance of non-classical photon correlations in the combined strong coupling and sideband resolved regime, and provide a first detailed understanding of photon-photon interactions in strong coupling optomechanics.
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nano-mechanical devices either in a transient or a probabilistic fashion have been put forward. Here we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا