Do you want to publish a course? Click here

Bootstrapping topology and systemic risk of complex network using the fitness model

239   0   0.0 ( 0 )
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generated on the basis of the latter quan- tity according to a fitness model calibrated on the subset of nodes for which links are known. We measure the quality of the reconstruction of several topological properties, such as the network density and the degree distri- bution as a function of the size of the initial subset of nodes. Moreover, we also study the resilience of the network to distress propagation. We first test the method on ensembles of synthetic networks generated with the Exponential Random Graph model which allows to apply common tools from statistical mechanics. We then test it on the empirical case of the World Trade Web. In both cases, we find that a subset of 10 % of nodes is enough to reconstruct the main features of the network along with its resilience with an error of 5%.



rate research

Read More

A major problem in the study of complex socioeconomic systems is represented by privacy issues$-$that can put severe limitations on the amount of accessible information, forcing to build models on the basis of incomplete knowledge. In this paper we investigate a novel method to reconstruct global topological properties of a complex network starting from limited information. This method uses the knowledge of an intrinsic property of the nodes (indicated as fitness), and the number of connections of only a limited subset of nodes, in order to generate an ensemble of exponential random graphs that are representative of the real systems and that can be used to estimate its topological properties. Here we focus in particular on reconstructing the most basic properties that are commonly used to describe a network: density of links, assortativity, clustering. We test the method on both benchmark synthetic networks and real economic and financial systems, finding a remarkable robustness with respect to the number of nodes used for calibration. The method thus represents a valuable tool for gaining insights on privacy-protected systems.
Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum wealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erd{o}s-Renyi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and average degree of the considered networks.
Systematic relations between multiple objects that occur in various fields can be represented as networks. Real-world networks typically exhibit complex topologies whose structural properties are key factors in characterizing and further exploring the networks themselves. Uncertainty, modelling procedures and measurement difficulties raise often insurmountable challenges in fully characterizing most of the known real-world networks; hence, the necessity to predict their unknown elements from the limited data currently available in order to estimate possible future relations and/or to unveil unmeasurable relations. In this work, we propose a deep learning approach to this problem based on Graph Convolutional Networks for predicting networks while preserving their original structural properties. The study reveals that this method can preserve scale-free and small-world properties of complex networks when predicting their unknown parts, a feature lacked by the up-to-date conventional methods. An external validation realized by testing the approach on biological networks confirms the results, initially obtained on artificial data. Moreover, this process provides new insights into the retainability of network structure properties in network prediction. We anticipate that our work could inspire similar approaches in other research fields as well, where unknown mechanisms behind complex systems need to be revealed by combining machine-based and experiment-based methods.
251 - S. Dipple , T. Jia , T. Caraco 2016
We model a social-encounter network where linked nodes match for reproduction in a manner depending probabilistically on each node`s attractiveness. The developed model reveals that increasing either the network`s mean degree or the ``choosiness`` exercised during pair-formation increases the strength of positive assortative mating. That is, we note that attractiveness is correlated among mated nodes. Their total number also increases with mean degree and selectivity during pair-formation. By iterating over model mapping of parents onto offspring across generations, we study the evolution of attractiveness. Selection mediated by exclusion from reproduction increases mean attractiveness, but is rapidly balanced by skew in the offspring distribution of highly attractive mated pairs.
The functioning of the cryptocurrency Bitcoin relies on the open availability of the entire history of its transactions. This makes it a particularly interesting socio-economic system to analyse from the point of view of network science. Here we analyse the evolution of the network of Bitcoin transactions between users. We achieve this by using the complete transaction history from December 5th 2011 to December 23rd 2013. This period includes three bubbles experienced by the Bitcoin price. In particular, we focus on the global and local structural properties of the user network and their variation in relation to the different period of price surge and decline. By analysing the temporal variation of the heterogeneity of the connectivity patterns we gain insights on the different mechanisms that take place during bubbles, and find that hubs (i.e., the most connected nodes) had a fundamental role in triggering the burst of the second bubble. Finally, we examine the local topological structures of interactions between users, we discover that the relative frequency of triadic interactions experiences a strong change before, during and after a bubble, and suggest that the importance of the hubs grows during the bubble. These results provide further evidence that the behaviour of the hubs during bubbles significantly increases the systemic risk of the Bitcoin network, and discuss the implications on public policy interventions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا