No Arabic abstract
We review current experimental results on charm mixing and CP violation. We survey experimental techniques, including time-dependent, time-independent, and quantum-correlated measurements. We review techniques that use a slow pion tag from D*+ --> pi+ D0 + c.c. decays and those that do not, and cover two-body and multi-body D0 decay modes. We provide a summary of D-mixing results to date and comment on future experimental prospects at the LHC and other new or planned facilities.
Indirect searches, and in particular rare decays, have proven to be a fruitful field to search for New Physics beyond the Standard Model. While the down-quark sector (B and K) have been studied in detail, less attention was devoted to charm decays due to the smaller expected values and higher theoretical uncertainties of their observables. Recently a renewed interest is growing in rare charm searches. In this article we review the current experimental status of searches for rare decays in charmed hadrons. While the Standard Model rates are yet to be reached, current experimental limits are already putting constraints on New Physics models.
The experimental evidence for pentaquarks is reviewed and compared with the experiments that do not see any sign of pentaquarks.
In the past 10 years our knowledge of the parameters rho and eta of the Cabibbo-Kobayashi-Maskawa matrix has improved substantially. This article reviews the measurements that contributed to this advance, and discusses their implication in terms of understanding CP violation in the Standard Model and beyond.
Moments of the photon energy spectrum in B -> Xs gamma decays, of the hadronic mass spectrum and of the lepton energy spectrum in B -> Xc l nu decays are sensitive to the masses of the heavy quarks as well as to the non-perturbative parameters of the heavy quark expansion. Several measurements have been performed both at the Upsilon(4S) resonance and at Z0 center of mass energies. They provide constraints on the non-perturbative parameters, give a test of the consistency of the theoretical predictions and of the underlying assumptions and allow to reduce the uncertainties in the extraction of |Vcb|.
LHCb continues to expand its world-leading sample of charmed hadrons collected during LHCs Run 1 (2010-2012) and Run 2 (2015-present). This sample is yielding some of the most stringent tests of the Standard Model understanding of charm physics. This includes precise measurements of the neutral D-meson mixing parameters and some of the most sensitive searches for direct and indirect CP violation in charm interactions.