No Arabic abstract
For a bosonic (fermionic) open system in a bath with many bosons (fermions) modes, we derive the exact non-Markovian master equation in which the memory effect of the bath is reflected in the time dependent decay rates. In this approach, the reduced density operator is constructed from the formal solution of the corresponding Heisenberg equations. As an application of the exact master equation, we study the active probing of non-Markovianity of the quantum dissipation of a single boson mode of electromagnetic (EM) field in a cavity QED system. The non-Markovianity of the bath of the cavity is explicitly reflected by the atomic decoherence factor.
Characterisation protocols have so far played a central role in the development of noisy intermediate-scale quantum (NISQ) computers capable of impressive quantum feats. This trajectory is expected to continue in building the next generation of devices: ones that can surpass classical computers for particular tasks -- but progress in characterisation must keep up with the complexities of intricate device noise. A missing piece in the zoo of characterisation procedures is tomography which can completely describe non-Markovian dynamics. Here, we formally introduce a generalisation of quantum process tomography, which we call process tensor tomography. We detail the experimental requirements, construct the necessary post-processing algorithms for maximum-likelihood estimation, outline the best-practice aspects for accurate results, and make the procedure efficient for low-memory processes. The characterisation is the pathway to diagnostics and informed control of correlated noise. As an example application of the technique, we improve multi-time circuit fidelities on IBM Quantum devices for both standalone qubits and in the presence of crosstalk to a level comparable with the fault-tolerant noise threshold in a variety of different noise conditions. Our methods could form the core for carefully developed software that may help hardware consistently pass the fault-tolerant noise threshold.
The correlated-projection technique has been successfully applied to derive a large class of highly non Markovian dynamics, the so called non Markovian generalized Lindblad type equations or Lindblad rate equations. In this article, general unravellings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unravelling can be interpreted in terms of measurements continuous in time, but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and we discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.
We construct a large class of completely positive and trace preserving non-Markovian dynamical maps for an open quantum system. These maps arise from a piecewise dynamics characterized by a continuous time evolution interrupted by jumps, randomly distributed in time and described by a quantum channel. The state of the open system is shown to obey a closed evolution equation, given by a master equation with a memory kernel and a inhomogeneous term. The non-Markovianity of the obtained dynamics is explicitly assessed studying the behavior of the distinguishability of two different initial systems states with elapsing time.
We present a detailed microscopic derivation for a non-Markovian master equation for a driven two-state system interacting with a general structured reservoir. The master equation is derived using the time-convolutionless projection operator technique in the limit of weak coupling between the two-state quantum system and its environment. We briefly discuss the Markov approximation, the secular approximation and their validity.
In this paper we present a method to derive an exact master equation for a bosonic system coupled to a set of other bosonic systems, which plays the role of the reservoir, under the strong coupling regime, i.e., without resorting to either the rotating-wave or secular approximations. Working with phase-space distribution functions, we verify that the dynamics are separated in the evolution of its center, which follows classical mechanics, and its shape, which becomes distorted. This is the generalization of a result by Glauber, who stated that coherent states remain coherent under certain circumstances, specifically when the rotating-wave approximation and a zero-temperature reservoir are used. We show that the counter-rotating terms generate fluctuations that distort the vacuum state, much the same as thermal fluctuations.Finally, we discuss conditions for non-Markovian dynamics.