No Arabic abstract
The detection of moons orbiting extrasolar planets (exomoons) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary habitable edge. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon.
Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.
Geological evidence suggests liquid water near the Earths surface as early as 4.4 gigayears ago when the faint young Sun only radiated about 70 % of its modern power output. At this point, the Earth should have been a global snowball. An extreme atmospheric greenhouse effect, an initially more massive Sun, release of heat acquired during the accretion process of protoplanetary material, and radioactivity of the early Earth material have been proposed as alternative reservoirs or traps for heat. For now, the faint-young-sun paradox persists as one of the most important unsolved problems in our understanding of the origin of life on Earth. Here we use astrophysical models to explore the possibility that the new-born Moon, which formed about 69 million years (Myr) after the ignition of the Sun, generated extreme tidal friction - and therefore heat - in the Hadean and possibly the Archean Earth. We show that the Earth-Moon system has lost about 3e31 J, (99 % of its initial mechanical energy budget) as tidal heat. Tidal heating of roughly 10 W/m^2 through the surface on a time scale of 100 Myr could have accounted for a temperature increase of up to 5 degrees Celsius on the early Earth. This heating effect alone does not solve the faint-young-sun paradox but it could have played a key role in combination with other effects. Future studies of the interplay of tidal heating, the evolution of the solar power output, and the atmospheric (greenhouse) effects on the early Earth could help in solving the faint-young-sun paradox.
After protoplanets have acquired sufficient mass to open partial gaps in their natal protostellar disks, residual gas continues to diffuse onto horseshoe streamlines under effect of viscous dissipation, and meander in and out of the planets Hill sphere. Within the Hill sphere, the horseshoe streamlines intercept gas flow in circumplanetary disks. The host stars tidal perturbation induces a barrier across the converging streamlines interface. Viscous transfer of angular momentum across this tidal barrier determines the rate of mass diffusion from the horseshoe streamlines onto the circumplanetary disks, and eventually the accretion rate onto the protoplanets. We carry out a series of numerical simulations to test the influence of this tidal barrier on super thermal planets. In weakly viscous disks, protoplanets accretion rate steeply decreases with their masses above the thermal limit. As their growth timescale exceeds the gas depletion time scale, their masses reach asymptotic values comparable to that of Jupiter. In relatively thick and strongly viscous disks, protoplanets asymptotic masses exceed several times that of Jupiter. Two dimensional numerical simulations show that such massive protoplanets strongly excite the eccentricity of nearby horseshoe streamlines, destabilize orderly flow, substantially enhance the diffusion rate across the tidal barrier, and elevate their growth rate until their natal disk is severely depleted. In contrast, eccentric streamlines remain stable in three dimensional simulations. Based on the upper falloff in the observe mass distribution of known exoplanets, we suggest their natal disks had relatively low viscosity alpha sim 0.001, modest thickness H/R sim 0.03 to 0.05, and limited masses comparable to that of minimum mass solar nebula model.
The Kepler-186 system consists of five planets orbiting an early-M dwarf. The planets have physical radii of 1.0-1.50 R$_oplus$ and orbital periods of 4 to 130 days. The $1.1~$R$_oplus$ Kepler-186f with a period of 130 days is of particular interest. Its insolation of roughly $0.32~S_odot$places it within the liquid water habitable zone. We present a multi-faceted study of the Kepler-186 system. First, we show that the distribution of planet masses can be roughly reproduced if the planets accreted from a high-surface density disk presumably sculpted by an earlier phase of migration. However, our simulations predict the existence of 1-2 undetected planets between planets e and f. Next, we present a dynamical analysis of the system including the effect of tides. The timescale for tidal evolution is short enough that the four inner planets must have small obliquities and near-synchronous rotation rates. Tidal evolution of Kepler-186f is slow enough that its current spin state depends on a combination of its dissipation rate and the stellar age. Finally, we study the habitability of Kepler-186f with a 1-D climate model. The planets surface temperature can be raised above 273 K with 0.5-5 bars of CO$_2$, depending on the amount of N$_2$ present. Kepler-186f represents a case study of an Earth-sized planet in the cooler regions of the habitable zone of a cool star.
The thermal evolution of rocky planets on geological timescales (Gyr) depends on the heat input from the long-lived radiogenic elements potassium, thorium, and uranium. Concentrations of the latter two in rocky planet mantles are likely to vary by up to an order of magnitude between different planetary systems because Th and U, like other heavy r-process elements, are produced by rare stellar processes. Here we discuss the effects of these variations on the thermal evolution of an Earth-size planet, using a 1D parameterized convection model. Assuming Th and U abundances consistent with geochemical models of the Bulk Silicate Earth based on chondritic meteorites, we find that Earth had just enough radiogenic heating to maintain a persistent dynamo. According to this model, Earth-like planets of stars with higher abundances of heavy r-process elements, indicated by the relative abundance of europium in their spectra, are likely to have lacked a dynamo for a significant fraction of their lifetimes, with potentially negative consequences for hosting a biosphere. Because the qualitative outcomes of our 1D model are strongly dependent on the treatment of viscosity, further investigations using fully 3D convection models are desirable.