Do you want to publish a course? Click here

Measurement of high p_T isolated prompt photons in lead-lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector at the LHC

117   0   0.0 ( 0 )
 Added by Peter Steinberg
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Prompt photons are a powerful tool to study heavy ion collisions. Their production rates provide access to the initial state parton distribution functions and also provide a means to calibrate the expected energy of jets that are produced in the medium. The ATLAS detector measures photons with its hermetic, longitudinally segmented calorimeter, which gives excellent spatial and energy resolutions, and detailed information about the shower shape of each measured photon. This provides significant rejection against the expected background from the decays of neutral pions in jets. Rejection against jet fragmentation products is further enhanced by requiring candidate photons to be isolated. First results on the spectra of isolated prompt photons from a dataset with an integrated luminosity of approximately 0.13 nb^-1 of lead-lead collisions at sqrt(s_NN)=2.76 TeV are shown as a function of transverse momentum and centrality. The measured spectra are compared to expectations from perturbative QCD calculations.



rate research

Read More

The photo-production of $J/psi$ mesons at low transverse momentum is studied in peripheral lead-lead collisions collected by the LHCb experiment at a centre-of-mass energy per nucleon pair of 5 TeV, corresponding to an integrated luminosity of 210 $rm{mu b}^{-1}$. The $J/psi$ candidates are reconstructed through the prompt decay into two muons of opposite charge in the rapidity region of $2.0<y<4.5$. The results significantly improve previous measurements and are compared to the latest theoretical prediction.
112 - R. Aggarwal , M. Kaur 2020
We analyse the charged${text -}$particle multiplicity distributions measured by the ALICE experiment, over a wide pseudorapidity range, for $pp$ collisions at $sqrt{s}$=8,,7,and, 2.76~TeV at the LHC.~The analysis offers an understanding of particle production in high energy collisions in the purview of a new distribution, the shifted Gompertz distribution.~Data are compared with the distribution and moments of the distributions are calculated.~A modified version of the distribution is also proposed and used to improve the description of the data consisting of two different event classes; the inelastic and the non${text -}$single${text -}$diffractive and their subsets in different windows of pseudorapidity, $eta$.~The distribution used to analyse the data has a wide range of applicability to processes in different fields and complements the analysis done by the ALICE collaboration in terms of various LHC event generators and IP-Glasma calculations.
We present a systematic theoretical analysis of the ALICE measurement of low-$p_T$ direct-photon production in central lead-lead collisions at the LHC with a centre-of-mass energy of $sqrt{s_{NN}}=2.76$ TeV. Using next-to-leading order of perturbative QCD, we compute the relative contributions to prompt-photon production from different initial and final states and the theoretical uncertainties coming from independent variations of the renormalisation and factorisation scales, the nuclear parton densities and the fragmentation functions. Based on different fits to the unsubtracted and prompt-photon subtracted ALICE data, we consistently find an exponential, possibly thermal, photon spectrum from the quark-gluon plasma (or hot medium) with slope $T=304pm 58$ MeV and $309pm64$ MeV at $p_Tin[0.8;2.2]$ GeV and $p_Tin[1.5;3.5]$ GeV as well as a power-law ($p_T^{-4}$) behavior for $p_T>4$ GeV as predicted by QCD hard scattering.
The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb^{-1} collected in proton-proton collisions at a centre-of-mass energy of sqrt{s}=2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the Upsilon transverse momentum and rapidity, over the ranges p_T<15 GeV/c and 2.0<y<4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be sigma(pp -> Upsilon(1S) X) x B(Upsilon(1S) -> mu+mu-) = 1.111 +/- 0.043 +/- 0.044 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S) -> mu+mu-) = 0.264 +/- 0.023 +/- 0.011 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S) -> mu+mu-) = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا