Do you want to publish a course? Click here

Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces

193   0   0.0 ( 0 )
 Added by Gerasim Kokarev
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We prove two explicit bounds for the multiplicities of Steklov eigenvalues $sigma_k$ on compact surfaces with boundary. One of the bounds depends only on the genus of a surface and the index $k$ of an eigenvalue, while the other depends as well on the number of boundary components. We also show that on any given smooth Riemannian surface with boundary, the multiplicities of Steklov eigenvalues $sigma_k$ are uniformly bounded in $k$.



rate research

Read More

The paper is concerned with the maximization of Laplace eigenvalues on surfaces of given volume with a Riemannian metric in a fixed conformal class. A significant progress on this problem has been recently achieved by Nadirashvili-Sire and Petrides using related, though different methods. In particular, it was shown that for a given $k$, the maximum of the $k$-th Laplace eigenvalue in a conformal class on a surface is either attained on a metric which is smooth except possibly at a finite number of conical singularities, or it is attained in the limit while a bubble tree is formed on a surface. Geometrically, the bubble tree appearing in this setting can be viewed as a union of touching identical round spheres. We present another proof of this statement, developing the approach proposed by the second author and Y. Sire. As a side result, we provide explicit upper bounds on the topological spectrum of surfaces.
95 - Zunwu He , Bobo Hua 2020
In this paper, we study the bounds for discrete Steklov eigenvalues on trees via geometric quantities. For a finite tree, we prove sharp upper bounds for the first nonzero Steklov eigenvalue by the reciprocal of the size of the boundary and the diameter respectively. We also prove similar estimates for higher order Steklov eigenvalues.
87 - Herng Yi Cheng 2021
This paper proves that in any closed Riemannian surface $M$ with diameter $d$, the length of the $k^text{th}$-shortest geodesic between two given points $p$ and $q$ is at most $8kd$. This bound can be tightened further to $6kd$ if $p = q$. This improves prior estimates by A. Nabutovsky and R. Rotman.
We show that for any positive integer k, the k-th nonzero eigenvalue of the Laplace-Beltrami operator on the two-dimensional sphere endowed with a Riemannian metric of unit area, is maximized in the limit by a sequence of metrics converging to a union of k touching identical round spheres. This proves a conjecture posed by the second author in 2002 and yields a sharp isoperimetric inequality for all nonzero eigenvalues of the Laplacian on a sphere. Earlier, the result was known only for k=1 (J. Hersch, 1970), k=2 (N. Nadirashvili, 2002; R. Petrides, 2014) and k=3 (N. Nadirashvili and Y. Sire, 2017). In particular, we argue that for any k>=2, the supremum of the k-th nonzero eigenvalue on a sphere of unit area is not attained in the class of Riemannian metrics which are smooth outsitde a finite set of conical singularities. The proof uses certain properties of harmonic maps between spheres, the key new ingredient being a bound on the harmonic degree of a harmonic map into a sphere obtained by N. Ejiri.
We revisit classical eigenvalue inequalities due to Buser, Cheng, and Gromov on closed Riemannian manifolds, and prove t
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا