Do you want to publish a course? Click here

Spontaneous avalanche ionization of a strongly blockaded Rydberg gas

123   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the sudden and spontaneous evolution of an initially correlated gas of repulsively interacting Rydberg atoms to an ultracold plasma. Under continuous laser coupling we create a Rydberg ensemble in the strong blockade regime, which at longer times undergoes an ionization avalanche. By combining optical imaging and ion detection, we access the full information on the dynamical evolution of the system, including the rapid increase in the number of ions and a sudden depletion of the Rydberg and ground state densities. Rydberg-Rydberg interactions are observed to strongly affect the dynamics of plasma formation. Using a coupled rate-equation model to describe our data, we extract the average energy of electrons trapped in the plasma, and an effective cross-section for ionizing collisions between Rydberg atoms and atoms in low-lying states. Our results suggest that the initial correlations of the Rydberg ensemble should persist through the avalanche. This would provide the means to overcome disorder-induced-heating, and offer a route to enter new strongly-coupled regimes.

rate research

Read More

498 - M. Siercke , F.E. Oon , A. Mohan 2014
We report on the behaviour of the ionization avalanche in an ensemble of ultracold 87Rb atoms coupled to a high lying Rydberg state and investigate extensions to the current model by including the effects of three-body recombination and plasma expansion. To separate the two effects we study the time dependence of the plasma formation at various densities as well as for different nS and nD states. At medium densities and low n we observe the onset of the avalanche as has been reported in other experiments, as well as a subsequent turn-off of the avalanche for longer excitation times, which we associate with plasma expansion. At higher densities and for higher lying Rydberg states we observe a disappearance of the avalanche signature, which we attribute to three-body recombination.
We have studied an ionization of alkali-metal Rydberg atoms by blackbody radiation (BBR). The results of the theoretical calculations of ionization rates of Li, Na, K, Rb and Cs Rydberg atoms are presented. Calculations have been performed for nS, nP and nD states which are commonly used in a variety of experiments, at principal quantum numbers n=8-65 and at the three ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is that we take into account the contributions of BBR-induced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of measured ionization rates and shapes of their dependences on n. A Cooper minimum for BBR-induced transitions between bound Rydberg states of Li has been found. The calculated ionization rates are compared with our earlier measurements of BBR-induced ionization rates of Na nS and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states except nS with n>15 is observed. Useful analytical formulas for quick estimation of BBR ionization rates of Rydberg atoms are presented. Application of BBR-induced ionization signal to measurements of collisional ionization rates is demonstrated.
214 - G. Bannasch , T.C. Killian , 2013
We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.
177 - G. Bannasch , T. Pohl 2011
In plasmas at very low temperatures formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ~ T^(-9/2) scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T -> 0 clearly suggest a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics-Monte-Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence-problem as the plasma enters the ultracold, strongly coupled domain.
Strong dipole-exchange interactions due to spontaneously produced contaminant states can trigger rapid dephasing in many-body Rydberg ensembles [E. Goldschmidt et al., PRL 116, 113001 (2016)]. Such broadening has serious implications for many proposals to coherently use Rydberg interactions, particularly Rydberg dressing proposals. The dephasing arises as a runaway process where the production of the first contaminant atoms facilitates the creation of more contaminant atoms. Here we study the time dependence of this process with stroboscopic approaches. Using a pump-probe technique, we create an excess pump Rydberg population and probe its effect with a different probe Rydberg transition. We observe a reduced resonant pumping rate and an enhancement of the excitation on both sides of the transition as atoms are added to the pump state. We also observe a timescale for population growth significantly shorter than predicted by homogeneous mean-field models, as expected from a clustered growth mechanism where high-order correlations dominate the dynamics. These results support earlier works and confirm that the time scale for the onset of dephasing is reduced by a factor which scales as the inverse of the atom number. In addition, we discuss several approaches to minimize these effects of spontaneous broadening, including stroboscopic techniques and operating at cryogenic temperatures. It is challenging to avoid the unwanted broadening effects, but under some conditions they can be mitigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا