Do you want to publish a course? Click here

Kinetic vs. energetic discrimination in biological copying

160   0   0.0 ( 0 )
 Added by Simone Pigolotti
 Publication date 2012
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimination mechanisms are strictly alternative and can not be mixed to further reduce the error fraction. Close to the lowest error limit, kinetic discrimination results in a diverging copying velocity and dissipation per copied bit. On the opposite, energetic discrimination reaches its lowest error limit in an adiabatic regime where dissipation and velocity vanish. By analyzing experimentally measured kinetic rates of two DNA polymerases, T7 and Pol{gamma}, we argue that one of them operates in the kinetic and the other in the energetic regime. Finally, we show how the two mechanisms can be combined in copying schemes implementing error correction through a proofreading pathway



rate research

Read More

73 - Ilana Bogod , Saar Rahav 2017
One of the causes of high fidelity of copying in biological systems is kinetic discrimination. In this mechanism larger dissipation and copying velocity result in improved copying accuracy. We consider a model of a polymerase which simultaneously copies a single stranded RNA and opens a single- to double-stranded junction serving as an obstacle. The presence of the obstacle slows down the motor, resulting in a change of its fidelity, which can be used to gain information about the motor and junction dynamics. We find that the motors fidelity does not depend on details of the motor-junction interaction, such as whether the interaction is passive or active. Analysis of the copying fidelity can still be used as a tool for investigating the junction kinetics.
There is increasing evidence that protein binding to specific sites along DNA can activate the reading out of genetic information without coming into direct physical contact with the gene. There also is evidence that these distant but interacting sites are embedded in a liquid droplet of proteins which condenses out of the surrounding solution. We argue that droplet-mediated interactions can account for crucial features of gene regulation only if the droplet is poised at a non-generic point in its phase diagram. We explore a minimal model that embodies this idea, show that this model has a natural mechanism for self-tuning, and suggest direct experimental tests.
Several independent observations have suggested that catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent {it in vitro} observations by Gardner et al.[ M. K. Gardner et al., Cell {bf147}, 1092 (2011)] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here, we investigate, via numerical simulations and mathematical calculations, some of the consequences of age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically and purely linear growth. The boundary demarcating the steady state and non-steady state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to non-exponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
Long cell protrusions, which are effectively one-dimensional, are highly dynamic subcellular structures. Length of many such protrusions keep fluctuating about the mean value even in the the steady state. We develop here a stochastic model motivated by length fluctuations of a type of appendage of an eukaryotic cell called flagellum (also called cilium). Exploiting the techniques developed for the calculation of level-crossing statistics of random excursions of stochastic process, we have derived analytical expressions of passage times for hitting various thresholds, sojourn times of random excursions beyond the threshold and the extreme lengths attained during the lifetime of these model flagella. We identify different parameter regimes of this model flagellum that mimic those of the wildtype and mutants of a well known flagellated cell. By analysing our model in these different parameter regimes, we demonstrate how mutation can alter the level-crossing statistics even when the steady state length remains unaffected by the same mutation. Comparison of the theoretically predicted level crossing statistics, in addition to mean and variance of the length, in the steady state with the corresponding experimental data can be used in near future as stringent tests for the validity of the models of flagellar length control. The experimental data required for this purpose, though never reported till now, can be collected, in principle, using a method developed very recently for flagellar length fluctuations.
We discuss the problem of proteasomal degradation of proteins. Though proteasomes are important for all aspects of the cellular metabolism, some details of the physical mechanism of the process remain unknown. We introduce a stochastic model of the proteasomal degradation of proteins, which accounts for the protein translocation and the topology of the positioning of cleavage centers of a proteasome from first principles. For this model we develop the mathematical description based on a master-equation and techniques for reconstruction of the cleavage specificity inherent to proteins and the proteasomal translocation rates, which are a property of the proteasome specie, from mass spectroscopy data on digestion patterns. With these properties determined, one can quantitatively predict digestion patterns for new experimental set-ups. Additionally we design an experimental set-up for a synthetic polypeptide with a periodic sequence of amino acids, which enables especially reliable determination of translocation rates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا