Do you want to publish a course? Click here

The naked emergence of solar active regions observed with SDO/HMI

165   0   0.0 ( 0 )
 Added by Rebecca Centeno
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We take advantage of the HMI/SDO instrument to study the naked emergence of active regions from the first imprints of the magnetic field on the solar surface. To this end, we followed the first 24 hours in the life of two rather isolated ARs that appeared on the surface when they were about to cross the central meridian. We analyze the correlations between Doppler velocities and the orientation of the vector magnetic field finding, consistently, that the horizontal fields connecting the main polarities are dragged to the surface by relatively-strong upflows and are associated to elongated granulation that is, on average, brighter than its surroundings. The main magnetic footpoints, on the other hand, are dominated by vertical fields and downflowing plasma. The appearance of moving dipolar features, MDFs, (of opposite polarity to that of the AR) in between the main footpoints, is a rather common occurrence once the AR reaches a certain size. The buoyancy of the fields is insufficient to lift up the magnetic arcade as a whole. Instead, weighted by the plasma that it carries, the field is pinned down to the photosphere at several places in between the main footpoints, giving life to the MDFs and enabling channels of downflowing plasma. MDF poles tend to drift towards each other, merge and disappear. This is likely to be the signature of a reconnection process in the dipped field lines, which relieves some of the weight allowing the magnetic arcade to finally rise beyond the detection layer of the HMI spectral line.



rate research

Read More

Aims: The statistics of the photospheric granulation pattern are investigated using continuum images observed by Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) taken at 6713~AA. Methods: The supergranular boundaries can be extracted by tracking photospheric velocity plasma flows. The local ball-tracking method is employed to apply on the HMI data gathered over the years 2011-2015 to estimate the boundaries of the cells. The edge sharpening techniques are exerted on the output of ball-tracking to precisely identify the cells borders. To study the fractal dimensionality (FD) of supergranulation, the box counting method is used. Results: We found that both the size and eccentricity follow the log-normal distributions with peak values about 330 Mm$^2$ and 0.85, respectively. The five-year mean value of the cells number appeared in half-hour sequences is obtained to be about 60 $pm$ 6 within an area of $350^{primeprime}times350^{primeprime}$. The cells orientation distribution presents the power-law behavior. Conclusions: The orientation of supergranular cells ($O$) and their size ($S$) follows a power-law function as $|O| propto S^{9.5}$. We found that the non-roundish cells with smaller and larger sizes than 600 Mm$^2$ are aligned and perpendicular with the solar rotational velocity on the photosphere, respectively. The FD analysis shows that the supergranular cells form the self-similar patterns.
Downflows on the solar surface are suspected to play a major role in the dynamics of the convection zone. We investigate the existence of the long-lasting downflows whose effects influence the interior of the Sun and the outer layers. We study the sets of Dopplergrams and magnetograms observed with SDO and Hinode spacecrafts and a MHD simulation. All of the aligned sequences, which were corrected from the satellite motions and tracked with the differential rotation, were used to detect the long-lasting downflows in the quiet-Sun at the disc centre. To learn about the structure of the flows below the solar surface, the time-distance local helioseismology was used. The inspection of the 3D data cube (x, y, t) of the 24-hour Doppler sequence allowed us to detect 13 persistent downflows. Their lifetimes lie in the range between 3.5 and 20 hours with sizes between 2 and 3 and speeds between -0.25 and -0.72 km/s. These persistent downflows are always filled with the magnetic field with an amplitude of up to 600 G. The helioseismic inversion allows us to describe the persistent downflows and compare them to the other (non-persistent) downflows in the field of view. The persistent downflows seem to penetrate much deeper and, in the case of a well-formed vortex, the vorticity keeps its integrity to the depth of about 5 Mm. In the MHD simulation, only sub-arcsecond downflows are detected with no evidence of a vortex comparable in size to observations at the surface of the Sun. The long temporal sequences from the space-borne allow us to show the existence of long-persistent downflows together with the magnetic field. They penetrate inside the Sun but are also connected with the anchoring of coronal loops in the photosphere, indicating a link between downflows and the coronal activity. A link suggests that EUV cyclones over the quiet Sun could be an effective way to heat the corona.
We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to model the force-free coronal field above a solar active region, assuming magnetic forces to dominate. We take measurement uncertainties caused by, e.g., noise and the particular inversion technique into account. After searching for the optimum modeling parameters for the particular data sets, we compare the resulting nonlinear force-free model fields. We show the degree of agreement of the coronal field reconstructions from the different data sources by comparing the relative free energy content, the vertical distribution of the magnetic pressure and the vertically integrated current density. Though the longitudinal and transverse magnetic flux measured by the VSM and HMI is clearly different, we find considerable similarities in the modeled fields. This indicates the robustness of the algorithm we use to calculate the nonlinear force-free fields against differences and deficiencies of the photospheric vector maps used as an input. We also depict how much the absolute values of the total force-free, virial and the free magnetic energy differ and how the orientation of the longitudinal and transverse components of the HMI- and VSM-based model volumes compares to each other.
NuSTAR is a highly sensitive focusing hard X-ray (HXR) telescope and has observed several small microflares in its initial solar pointings. In this paper, we present the first joint observation of a microflare with NuSTAR and Hinode/XRT on 2015 April 29 at ~11:29 UT. This microflare shows heating of material to several million Kelvin, observed in Soft X-rays (SXRs) with Hinode/XRT, and was faintly visible in Extreme Ultraviolet (EUV) with SDO/AIA. For three of the four NuSTAR observations of this region (pre-, decay, and post phases) the spectrum is well fitted by a single thermal model of 3.2-3.5 MK, but the spectrum during the impulsive phase shows additional emission up to 10 MK, emission equivalent to A0.1 GOES class. We recover the differential emission measure (DEM) using SDO/AIA, Hinode/XRT, and NuSTAR, giving unprecedented coverage in temperature. We find the pre-flare DEM peaks at ~3 MK and falls off sharply by 5 MK; but during the microflares impulsive phase the emission above 3 MK is brighter and extends to 10 MK, giving a heating rate of about $2.5 times 10^{25}$ erg s$^{-1}$. As the NuSTAR spectrum is purely thermal we determined upper-limits on the possible non-thermal bremsstrahlung emission. We find that for the accelerated electrons to be the source of the heating requires a power-law spectrum of $delta ge 7$ with a low energy cut-off $E_{c} lesssim 7$ keV. In summary, this first NuSTAR microflare strongly resembles much more powerful flares.
Using data from the Helioseismic Magnetic Imager, we report on the amplitudes and phase relations of oscillations in quiet-Sun, plage, umbra and the polarity inversion line (PIL) of an active region NOAA$#$11158. We employ Fourier, wavelet and cross correlation spectra analysis. Waves with 5-minute periods are observed in umbra, PIL and plage with common phase values of ${phi}(v,I)=frac{pi}{2}$, ${phi}(v,B_{los})=-frac{pi}{2}$. In addition, ${phi}(I,B_{los})=pi$ in plage are observed. These phase values are consistent with slow standing or fast standing surface sausage wave modes. The line width variations, and their phase relations with intensity and magnetic oscillations, show different values within the plage and PIL regions, which may offer a way to further differentiate wave mode mechanics. Significant Doppler velocity oscillations are present along the PIL, meaning that plasma motion is perpendicular to the magnetic field lines, a signature of Alv`enic waves. A time-distance diagram along a section of the PIL shows Eastward propagating Doppler oscillations converting into magnetic oscillations; the propagation speeds range between 2$-$6 km s$^{-1}$. Lastly, a 3-minute wave is observed in select regions of the umbra in the magnetogram data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا