No Arabic abstract
We report the first detection of a radio-continuum and molecular jet associated with a dominant blue-shifted maser source, G353.273+0.641. A radio jet is extended 3000 au along NW-SE direction. H$_{2}$O masers are found to be clustered in the root of a bipolar radio jet. A molecular jet is detected by thermal SiO ($upsilon$ = 0, $J$ = 2-1) emission. The SiO spectrum is extremely wide (-120 -- +87 km s$^{-1}$) and significantly blue-shift dominated, similar to the maser emission. The observed geometry and remarkable spectral similarity between H$_{2}$O maser and SiO strongly suggests the existence of a maser-scale ($sim$ 340 au) molecular jet that is enclosed by the extended radio jet. We propose a disc-masking scenario as the origin of the strong blue-shift dominance, where an optically thick disc obscures a red-shifted lobe of a compact jet.
(abbreviated) We investigate the spatial structure and spectral energy distribution of an edge-on circumstellar disk around an optically invisible young stellar object that is embedded in a dark cloud in the Carina Nebula. Whereas the object was detected as an apparently point-like source in earlier infrared observations, only the superb image quality (FWHM ~0.5) of our VLT / HAWK-I data could reveal, for the first time, its peculiar morphology. It consists of a very red point-like central source that is surrounded by a roughly spherical nebula, which is intersected by a remarkable dark lane through the center. We construct the spectral energy distribution of the object from 1 to 870 microns and perform a detailed radiative transfer modeling of the spectral energy distribution and the source morphology. The observed object morphology in the near-IR images clearly suggests a young stellar object that is embedded in an extended, roughly spherical envelope and surrounded by a large circumstellar disk with a diameter of ~5500 AU that is seen nearly edge-on. The radiative transfer modeling shows that the central object is a massive (10-15 Msun) young stellar object. The circumstellar disk has a mass of about 2 Msun. The disk object in Carina is one of the most massive young stellar objects for which a circumstellar disk has been detected so far, and the size and mass of the disk are very large compared to the corresponding values found for most other similar objects.
We have measured the internal proper motions of the 6.7 GHz methanol masers associated with Cepheus A (Cep A) HW2 using Very Long Baseline Interferometery (VLBI) observations. We conducted three epochs of VLBI monitoring observations of the 6.7 GHz methanol masers in Cep A-HW2 with the Japanese VLBI Network (JVN) over the period between 2006-2008. In 2006, we were able to use phase-referencing to measure the absolute coordinates of the maser emission with an accuracy of a few milliarcseconds. We compared the maser distribution with other molecular line observations that trace the rotating disk. We measured the internal proper motions for 29 methanol maser spots, of which 19 were identified at all three epochs and the remaining ten at only two epochs. The magnitude of proper motions ranged from 0.2 to 7.4 km/s, with an average of 3.1 km/s. Although there are large uncertainties in the observed internal proper motions of the methanol maser spots in Cep A, they are well fitted by a disk that includes both rotation and infall velocity components. The derived rotation and infall velocities at the disk radius of 680 au are 0.5 +- 0.7 and 1.8 +- 0.7 km/s, respectively. Assuming that the modeled disk motion accurately represents the accretion disk around the Cep A-HW2 high-mass YSO, we estimated the mass infall rate to be 3 x 10^{-4} n_8 Msun/yr (n_8 is the gas volume density in units of 10^{8} cm^{-3}). The combination of the estimated mass infall rate and the magnitude of the fitted infall velocity suggests that Cep A-HW2 is at an evolutionary phase of active gas accretion from the disk onto the central high-mass YSO. The infall momentum rate is estimated to be 5 x 10^{-4} n_8 Msun/yr km/s, which is larger than the estimated stellar radiation pressure of the HW2 object, supporting the hypothesis that this object is in an active gas accretion phase.
We report the discovery of maser emission in the two lowest rotational transitions of CS toward the high-mass protostar W51 e2e with ALMA and the JVLA. The masers from CS J=1-0 and J=2-1 are neither spatially nor spectrally coincident (they are separated by ~150 AU and ~30 km/s), but both appear to come from the base of the blueshifted outflow from this source. These CS masers join a growing list of rarely-detected maser transitions that may trace a unique phase in the formation of high-mass protostars.
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obtained Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.
Solar-mass stars form via circumstellar disk accretion (disk-mediated accretion). Recent findings indicate that this process is likely episodic in the form of accretion bursts, possibly caused by disk fragmentation. Although it cannot be ruled out that high-mass young stellar objects (HMYSOs; $M>$8 M$_odot$, $L_{bol}>$5$times$10$^3$ L$_odot$) arise from the coalescence of their low-mass brethren, latest results suggest that they more likely form via disks. Accordingly, disk-mediated accretion bursts should occur. Here we report on the discovery of the first disk-mediated accretion burst from a $sim$20 M$_odot$ HMYSO. Our near-infrared images show the brightening of the central source and its outflow cavities. Near-infrared spectroscopy reveals emission lines typical of accretion bursts in low-mass protostars, but orders of magnitude more luminous. Moreover, the energy released and the inferred mass-accretion rate are also orders of magnitude larger. Our results identify disk accretion as the common mechanism of star formation across the entire stellar mass spectrum.