Do you want to publish a course? Click here

Fundamental Physics Explored with High Intensity Laser

148   0   0.0 ( 0 )
 Added by Kensuke Homma
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Over the last Century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the colliders shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers.



rate research

Read More

230 - J.L. Hewett , H. Weerts , R. Brock 2012
The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.
The astrophysical neutrinos discovered by IceCube have the highest detected neutrino energies --- from TeV to PeV --- and likely travel the longest distances --- up to a few Gpc, the size of the observable Universe. These features make them naturally attractive probes of fundamental particle-physics properties, possibly tiny in size, at energy scales unreachable by any other means. The decades before the IceCube discovery saw many proposals of particle-physics studies in this direction. Today, those proposals have become a reality, in spite of astrophysical unknowns. We will showcase examples of doing fundamental neutrino physics at these scales, including some of the most stringent tests of physics beyond the Standard Model. In the future, larger neutrino energies --- up to tens of EeV --- could be observed with larger detectors and further our reach.
146 - J. Klepp , S. Sponar , Y. Hasegawa 2014
Ongoing fascination with quantum mechanics keeps driving the development of the wide field of quantum-optics, including its neutron-optics branch. Application of neutron-optical methods and, especially, neutron interferometry and polarimetry has a long-standing tradition for experimental investigations of fundamental quantum phenomena. We give an overview of related experimental efforts made in recent years.
New Physics models in which the Standard Model particle content is enlarged via the addition of sterile fermions remain among the most minimal and yet most appealing constructions, particularly since these states are present as building blocks of numerous mechanisms of neutrino mass generation. Should the new sterile states have non-negligible mixings to the active (light) neutrinos, and if they are not excessively heavy, one expects important contributions to numerous high-intensity observables, among them charged lepton flavour violating muon decays and transitions, and lepton electric dipole moments. We briefly review the prospects of these minimal SM extensions to several of the latter observables, considering both simple extensions and complete models of neutrino mass generation. We emphasise the existing synergy between different observables at the Intensity Frontier, which will be crucial in unveiling the new model at work.
The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S. Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation - a fundamental postulate of Einsteins theory of general relativity. By using a combination of independent time-series of highly accurate gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity. The primary mission objective is to i) measure the key post-Newtonian Eddington parameter gamma with accuracy of a part in 10^9. (1-gamma) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassinis 2003 test. The mission will also provide: ii) first measurement of gravitys non-linear effects on light to ~0.01% accuracy; including both the Eddington beta parameter and also the spatial metrics 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J2 (currently unavailable) to accuracy of a part in 200 of its expected size; iv) direct measurement of the frame-dragging effect on light by the Suns gravitomagnetic field, to 1% accuracy. LATORs primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in todays solar system. We discuss the mission design of this proposed experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا