Do you want to publish a course? Click here

Linear and nonlinear evolution of the vertical shear instability in accretion discs

129   0   0.0 ( 0 )
 Added by Richard P. Nelson
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We analyse the stability and evolution of power-law accretion disc models. These have midplane densities that follow radial power-laws, and have either temperature or entropy distributions that are power-law functions of cylindrical radius. We employ two different hydrodynamic codes to perform 2D-axisymmetric and 3D simulations that examine the long-term evolution of the disc models as a function of the power-law indices of the temperature or entropy, the thermal relaxation time of the fluid, and the viscosity. We present a stability analysis of the problem that we use to interpret the simulation results. We find that disc models whose temperature or entropy profiles cause the equilibrium angular velocity to vary with height are unstable to the growth of modes with wavenumber ratios |k_R/k_Z| >> 1 when the thermodynamic response of the fluid is isothermal, or the thermal evolution time is comparable to or shorter than the local dynamical time scale. These discs are subject to the Goldreich-Schubert-Fricke (GSF) or `vertical shear linear instability. Development of the instability involves excitation of vertical breathing and corrugation modes in the disc, with the corrugation modes in particular being a feature of the nonlinear saturated state. Instability operates when the dimensionless disc kinematic viscosity nu < 10^{-6} (Reynolds numbers Re>H c_s/nu > 2500). In 3D the instability generates a quasi-turbulent flow, and the Reynolds stress produces a fluctuating effective viscosity coefficient whose mean value reaches alpha ~ 6 x 10^{-4} by the end of the simulation. The vertical shear instability in disc models which include realistic thermal physics has yet to be examined. Should it occur, however, our results suggest that it will have significant consequences for their internal dynamics, transport properties, and observational appearance.



rate research

Read More

Among the candidates for generating turbulence in accretion discs in situations with low intrinsic ionization the vertical shear instability (VSI) has become an interesting candidate, as it relies purely on a vertical gradient in the angular velocity. Existing simulations have shown that $alpha$-values a few times $10^{-4}$ can be generated. The particle growth in the early planet formation phase is determined by the dynamics of dust particles. Here, we address in particular the efficiency of VSI-turbulence in concentrating particles in order to generate overdensities and low collision velocities. We perform 3D numerical hydrodynamical simulations of accretion discs around young stars that include radiative transport and irradiation from the central star. The motion of particles within a size range of a fraction of mm up to several m is followed using standard drag formula. We confirm that under realistic conditions the VSI is able to generate turbulence in full 3D protoplanetary discs. The irradiated disc shows turbulence within 10 to 60au. The mean radial motion of the gas is such that it is directed inward near the midplane and outward in the surface layers. We find that large particles drift inward with the expected speed, while small particles can experience phases of outward drift. Additionally, the particles show bunching behaviour with overdensities reaching 5 times the average value, which is strongest for dimensionless stopping times around unity. Particles in a VSI-turbulent discs are concentrated in large scale turbulent eddies and show low relative speeds that allow for growing collisions. The reached overdensities will also allow for the onset streaming instabilities further enhancing particle growth. The outward drift for small particles at higher disk elevations allows for the transport of processed high temperature material in the Solar System to larger distances.
259 - Min-Kai Lin 2016
We quantify the thermodynamic requirement for the Vertical Shear Instability and evaluate its relevance to realistic protoplanetary disks as a potential route to hydrodynamic turbulence.
155 - Urs Schafer , Anders Johansen , 2020
The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. Yet, the role of this instability in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical instability, has so far not been investigated in detail. We study the turbulence that is induced by the streaming instability as well as its interaction with the vertical shear instability. For this purpose, we employ the FLASH Code to conduct two-dimensional axisymmetric global disk simulations spanning radii from $1$ au to $100$ au, including the mutual drag between gas and dust as well as the radial and vertical stellar gravity. If the streaming instability and the vertical shear instability start their growth at the same time, we find the turbulence in the dust mid-plane layer to be primarily driven by the streaming instability. It gives rise to vertical gas motions with a Mach number of up to ${sim}10^{-2}$. The dust scale height is set in a self-regulatory manner to about $1%$ of the gas scale height. In contrast, if the vertical shear instability is allowed to saturate before the dust is introduced into our simulations, then it continues to be the main source of the turbulence in the dust layer. The vertical shear instability induces turbulence with a Mach number of ${sim}10^{-1}$ and thus impedes dust sedimentation. Nonetheless, we find the vertical shear instability and the streaming instability in combination to lead to radial dust concentration in long-lived accumulations which are significantly denser than those formed by the streaming instability alone. Thus, the vertical shear instability may promote planetesimal formation by creating weak overdensities that act as seeds for the streaming instability.
The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary disks (PPDs). While there is extensive literature on the VSI in the hydrodynamic limit, PPDs are expected to be magnetized and their extremely low ionization fractions imply that non-ideal magneto-hydrodynamic (MHD) effects should be properly considered. To this end, we present linear analyses of the VSI in magnetized disks with Ohmic resistivity. We primarily consider toroidal magnetic fields, which are likely to dominate the field geometry in PPDs. We perform vertically global and radially local analyses to capture characteristic VSI modes with extended vertical structures. To focus on the effect of magnetism, we use a locally isothermal equation of state. We find that magnetism provides a stabilizing effect to dampen the VSI, with surface modes, rather than body modes, being the first to vanish with increasing magnetization. Subdued VSI modes can be revived by Ohmic resistivity, where sufficient magnetic diffusion overcome magnetic stabilization, and hydrodynamic results are recovered. We also briefly consider poloidal fields to account for the magnetorotational instability (MRI), which may develop towards surface layers in the outer parts of PPDs. The MRI grows efficiently at small radial wavenumbers, in contrast to the VSI. When resistivity is considered, we find the VSI dominates over the MRI for Ohmic Els{a}sser numbers $lesssim 0.09$ at plasma beta parameter $beta_Z sim 10^4$.
Theoretical models of protoplanetary disks have shown the Vertical Shear Instability (VSI) to be a prime candidate to explain turbulence in the dead zone of the disk. However, simulations of the VSI have yet to show consistent levels of key disk turbulence parameters like the stress-to-pressure ratio $alpha$. We aim to reconcile these different values by performing a parameter study on the VSI with focus on the disk density gradient $p$ and aspect ratio $h := H/R$. We use full 2$pi$ 3D simulations of the disk for chosen set of both parameters. All simulations are evolved for 1000 reference orbits, at a resolution of 18 cells per h. We find that the saturated stress-to-pressure ratio in our simulations is dependent on the disk aspect ratio with a review{strong} scaling of $alphapropto h^{2.6}$, in contrast to the traditional $alpha$ model, where viscosity scales as $ u propto alpha h^2$ with a constant $alpha$. We also observe consistent formation of large scale vortices across all investigated parameters. The vortices show uniformly aspect ratios of $chi approx 10$ and radial widths of approximately 1.5 $H$. With our findings we can reconcile the different values reported for the stress-to-pressure ratio from both isothermal and radiation hydrodynamics models, and show long-term evolution effects of the VSI that could aide in the formation of planetesimals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا