Do you want to publish a course? Click here

Status of the CALICE analog calorimeter technological prototypes

113   0   0.0 ( 0 )
 Added by Mark Terwort
 Publication date 2012
  fields Physics
and research's language is English
 Authors Mark Terwort




Ask ChatGPT about the research

The CALICE collaboration is currently developing engineering prototypes of electromagnetic and hadronic calorimeters for a future linear collider detector. This detector is designed to be used in particle-flow based event reconstruction. In particular, the calorimeters are optimized for the individual reconstruction and separation of electromagnetic and hadronic showers. They are conceived as sampling calorimeters with tungsten and steel absorbers, respectively. Two electromagnetic calorimeters are being developed, one with silicon-based active layers and one based on scintillator strips that are read out by MPPCs, allowing highly granular readout. The analog hadron calorimeter is based on scintillating tiles that are also read out individually by silicon photomultipliers. The multi-channel, auto-triggered front-end chips are integrated into the active layers of the calorimeters and are designed for minimal power consumption (power pulsing). The goal of the construction of these prototypes is to demonstrate the feasibility of building and operating detectors with fully integrated front-end electronics. The concept and engineering status of these prototypes are reported here.



rate research

Read More

190 - Mark Terwort 2011
A basic prototype for an analog hadron calorimeter for a future linear collider detector is currently being realized by the CALICE collaboration. The aim is to show the feasibility to build a realistic detector with fully integrated readout electronics. An important aspect of the design is the improvement of the jet energy resolution by measuring details of the shower development with a highly granular device and combining them with the information from the tracking detectors. Therefore, the signals are sampled by small scintillating tiles that are read out by silicon photomultipliers. The ASICs are integrated into the calorimeter layers and are developed for minimal power dissipation. An embedded LED system per channel is used for calibration. The prototype has been tested extensively and the concept as well as results from the DESY test setups are reported here.
An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab.
The CALICE collaboration is developing an engineering prototype of an analog hadron calorimeter for a future linear collider detector. The prototype has to prove the feasibility of building a realistic detector with fully integrated front-end electronics. The performance goals are driven by the requirement of high jet energy resolution and the measurement of the details of the shower development. The signals are sampled by small scintillating plastic tiles that are read out by silicon photomultipliers. The ASICs are integrated into the calorimeter layers and are optimized for minimal power consumption. For the photodetector calibration an LED system is integrated into each of the detector channels. In this report the status and performance of the realized module are presented. In particular, results from timing measurements are discussed, as well as tests of the calibration system. The new module has also been used in the DESY test beam environment and first results from the electron beam tests are reported.
The CALICE Semi-Digital Hadronic Calorimeter (SDHCAL) prototype, built in 2011, was exposed to beams of hadrons, electrons and muons in two short periods in 2012 on two different beam lines of the CERN SPS. The prototype with its 48 active layers, made of Glass Resistive Plate Chambers and their embedded readout electronics, was run in triggerless and power-pulsing mode. The performance of the SDHCAL during the test beam was found to be very satisfactory with an efficiency exceeding 90% for almost all of the 48 active layers. A linear response (within 5%) and a good energy resolution are obtained for a large range of hadronic energies (5-80GeV) by applying appropriate calibration coefficients to the collected data for both the Digital (Binary) and the Semi-Digital (Multi-threshold) modes of the SDHCAL prototype. The Semi-Digital mode shows better performance at energies exceeding 30GeV
This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different modules 0 (barrel and endcap) for a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation of production.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا