Do you want to publish a course? Click here

Geometry of the energy landscape of the self-gravitating ring

161   0   0.0 ( 0 )
 Added by Lapo Casetti
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the global geometry of the energy landscape of a simple model of a self-gravitating system, the self-gravitating ring (SGR). This is done by endowing the configuration space with a metric such that the dynamical trajectories are identified with geodesics. The average curvature and curvature fluctuations of the energy landscape are computed by means of Monte Carlo simulations and, when possible, of a mean-field method, showing that these global geometric quantities provide a clear geometric characterization of the collapse phase transition occurring in the SGR as the transition from a flat landscape at high energies to a landscape with mainly positive but fluctuating curvature in the collapsed phase. Moreover, curvature fluctuations show a maximum in correspondence with the energy of a possible further transition, occurring at lower energies than the collapse one, whose existence had been previously conjectured on the basis of a local analysis of the energy landscape and whose effect on the usual thermodynamic quantities, if any, is extremely weak. We also estimate the largest Lyapunov exponent $lambda$ of the SGR using the geometric observables. The geometric estimate always gives the correct order of magnitude of $lambda$ and is also quantitatively correct at small energy densities and, in the limit $Ntoinfty$, in the whole homogeneous phase.



rate research

Read More

Among the stationary configurations of the Hamiltonian of a classical O$(n)$ lattice spin model, a class can be identified which is in one-to-one correspondence with all the the configurations of an Ising model defined on the same lattice and with the same interactions. Starting from this observation it has been recently proposed that the microcanonical density of states of an O$(n)$ model could be written in terms of the density of states of the corresponding Ising model. Later, it has been shown that a relation of this kind holds exactly for two solvable models, the mean-field and the one-dimensional $XY$ model, respectively. We apply the same strategy to derive explicit, albeit approximate, expressions for the density of states of the two-dimensional $XY$ model with nearest-neighbor interactions on a square lattice. The caloric curve and the specific heat as a function of the energy density are calculated and compared against simulation data, yielding a very good agreement over the entire energy density range. The concepts and methods involved in the approximations presented here are valid in principle for any O$(n)$ model.
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find that relaxation changes from a power-law to an exponential decay below a well-defined temperature, consistent with recent findings in mean-field $p$-spin models. By contrast, for finite-dimensional systems, the relaxation is always algebraic, with a non-trivial universal exponent at high temperatures crossing over to a harmonic value at low temperatures. We demonstrate that this apparent evolution is controlled by a temperature-dependent population of localised excitations. Our work unifies several recent lines of studies aiming at a detailed characterization of the complex potential energy landscape of glass-formers.
63 - T. Keyes , J. Chowdhary 2001
The mechanism of diffusion in supercooled liquids is investigated from the potential energy landscape point of view, with emphasis on the crossover from high- to low-T dynamics. Molecular dynamics simulations with a time dependent mapping to the associated local mininum or inherent structure (IS) are performed on unit-density Lennard-Jones (LJ). New dynamical quantities introduced include r2_{is}(t), the mean-square displacement (MSD) within a basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t) the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t) posesses an interval of linear t-dependence allowing calculation of an intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds the time, tau_{pl}, needed for the system to explore the basin, indicating the action of barriers. The distinction between motion among the IS below T_{c} and saddle, or border dynamics above T_{c} is discussed.
Configurational states that are to be associated, according to Goldstein, with the basins in the potential energy landscape cannot be characterized by any particular basin identifier such as the basin minima, the lowest barrier, the most probable energy barrier, etc. since the basin free energy turns out to be independent of the energies of these identifiers. Thus, our analysis utilizes basin free energies to characterize configurational states. When the basin identifier energies are monotonic, we can express the equilibrium basin free energy as a function of an equilibrium basin identifier energy, as we explain, but it is not necessarily unique.
The long wavelength emission of protostellar objects is commonly attributed to a disk of gas and dust around the central protostar. In the first stages of disk accretion or in the case of high mass protostars, the disk mass is likely to be sufficiently large, so that the disk self-gravity may have an impact on the dynamics and the emission properties of the disk. In this paper we describe the spectral energy distribution (SED) produced by a simple, non-flaring, self-gravitating accretion disk model. Self-gravity is included in the calculation of the rotation curve of the disk and in the energy balance equation, as a term of effective heating related to Jeans instability. In order to quantify in detail the requirements on the mass of the disk and on the accretion rate posed on the models by realistic situations, we compare the SEDs produced by these models with the observed SEDs of a small sample of well-studied protostellar objects. We find that relatively modest disks - even lighter than the central star - can lead to an interesting fit to the infrared SED of the FU Orionis objects considered, while in the case of T Tauri stars the required parameters fall outside the range suggested as acceptable by the general theoretical and observational scenario. On the basis of the present results, we may conclude that the contribution of a self-gravitating disk is plausible in several cases (in particular, for FU Orionis objects) and that, in the standard irradiation dominated disk scenario, it would help softening the requirements encountered by Keplerian accretion models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا