No Arabic abstract
We report magnetoresistance data in magnetic semiconductor multilayers, which exhibit a clear step-wise behavior as a function of external field. We attribute this highly non-trivial step-wise behavior to next-nearest-neighbor interlayer exchange coupling. Our microscopic calculation suggests that this next-nearest-neighbor coupling can be as large as 24% of the nearest-neighbor coupling. It is argued that such unusually long-range interaction is made possible by the quasi-one-dimensional nature of the system and by the long Fermi wavelength characteristic of magnetic semiconductors.
We experimentally study the interlayer interaction in a magnetic multilayer system ferromagnet/insulator/ferromagnet with different spacer thickness. We demonstrate that the sign and the magnitude of the interaction can be deduced from the FMR peak shape rather than from the FMR peak shift. The proposed technique allows studying the interlayer interaction using a single sample (without a reference sample for comparison).
Using the parallel tempering algorithm and GPU accelerated techniques, we have performed large-scale Monte Carlo simulations of the Ising model on a square lattice with antiferromagnetic (repulsive) nearest-neighbor(NN) and next-nearest-neighbor(NNN) interactions of the same strength and subject to a uniform magnetic field. Both transitions from the (2x1) and row-shifted (2x2) ordered phases to the paramagnetic phase are continuous. From our data analysis, reentrance behavior of the (2x1) critical line and a bicritical point which separates the two ordered phases at T=0 are confirmed. Based on the critical exponents we obtained along the phase boundary, Suzukis weak universality seems to hold.
The next-nearest neighbor hopping term t determines a magnitude and, hence, importance of several phenomena in graphene, which include self-doping due to broken bonds and the Klein tunneling that in the presence of t is no longer perfect. Theoretical estimates for t vary widely whereas a few existing measurements by using polarization resolved magneto-spectroscopy have found surprisingly large t, close or even exceeding highest theoretical values. Here we report dedicated measurements of the density of states in graphene by using high-quality capacitance devices. The density of states exhibits a pronounced electron-hole asymmetry that increases linearly with energy. This behavior yields t approx -0.30 eV +-15%, in agreement with the high end of theory estimates. We discuss the role of electron-electron interactions in determining t and overview phenomena which can be influenced by such a large value of t.
We show that the magnetism of double perovskite AFe_{1/2}M_{1/2}O_3 systems may be described by the Heisenberg model on the simple cubic lattice, where only half of sites are occupied by localized magnetic moments. The nearest-neighbor interaction J_1 is more than 20 times the next-nearest neighbor interaction J_2, the third-nearest interaction along the space diagonal of the cube being negligible. We argue that the variety of magnetic properties observed in different systems is connected with the variety of chemical ordering in them. We analyze six possible types of the chemical ordering in 2x2x2 supercell, and argue that the probability to find them in a real compound does not correspond to a random occupation of lattice sites by magnetic ions. The exchange J_2 rather than J_1 define the magnetic energy scale of most double perovskite compounds that means the enhanced probability of 1:1 short range ordering. Two multiferroic compounds PbFe_{1/2}M_{1/2}O_3 (M=Nb, Ta) are exceptions. We show that the relatively high temperature of antiferromagnetic transition is compatible with a layered short-range chemical order, which was recently shown to be most stable for these two compounds [I. P. Raevski, {em et al.}, Phys. Rev. B textbf{85}, 224412 (2012)]. We show also that one of the types of ordering has ferrimagnetic ground state. The clusters with short-range order of this type may be responsible for a room-temperature superparamagnetism, and may form the cluster glass at low temperatures.
Detailed dc and ac magnetic properties of chemically synthesized Nd0.4Sr0.6MnO3 with different particle size (down to 27 nm) have been studied in details. We have found ferromagnetic state in the nanoparticles, whereas, the bulk Nd0.4Sr0.6MnO3 is known to be an A-type antiferromagnet. A Griffiths-like phase has also been identified in the nanoparticles. Further, critical behavior of the nanoparticles has been studied around the second order ferromagnetic-paramagnetic transition region (|(T-TC)/TC|{pounds} 0.04) in terms of modified Arrott plot, Kouvel-Fisher plot and critical isotherm analysis. The estimated critical exponents (b,g,d) are quite different from those predicted according to three-dimensional mean-field, Heisenberg and Ising models. This signifies a quite unusual nature of the size-induced ferromagnetic state in Nd0.4Sr0.6MnO3. The nanoparticles are found to be interacting and do not behave like ideal superparamagnet. Interestingly, we find spin glass like slow relaxation of magnetization, aging and memory effect in the nanometric samples. These phenomena have been attributed to very broad distribution of relaxation time as well as to inter-particle interaction. Experimentally, we have found out that the dynamics of the nanoparticle systems can be best described by hierarchical model of spin glasses.