Do you want to publish a course? Click here

A Galactic O2 If*/WN6 star possibly ejected from its birthplace in NGC3603

83   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work I report the discovery of a new Galactic O2 If*/WN6 star, a rare member of the extremely massive hydrogen core-burning group of stars that due its high intrinsic luminosity (close to the Eddington limit), possess an emission-line spectrum at the beginning of their main-sequence evolution, mimicking the spectral appearance of classical WR stars. The new star is named WR42e and is found in isolation at 2.7 arcmin (about 6 pc) from the core of the star-burst cluster NGC3603. From the computed E(B-V) color excess and observed visual magnitude it was possible to estimate its absolute visual magnitude as MV =-6.3 mag, which is a value similar to those obtained by other researchers for stars of similar spectral type both, in the Galaxy and in the Large Magellanic Cloud. Considering the derived absolute visual magnitude, we computed a bolometric stellar luminosity of about 3.2x106 Lsun. Finally, the mass of the new O2If*/WN6 star was estimated by comparing its observed magnitudes and colors with those of other probable NGC3603 cluster members, founding that the WR42e initial mass possibly exceeds 100 Msun.



rate research

Read More

In this paper we report the identification of two new Galactic O2 If*/WN6 stars (WR20aa and WR20c), in the outskirt of the massive young stellar cluster Westerlund 2. The morphological similarity between the near-infrared spectra of the new stars with that of WR20a and WR21a (two of the most massive binaries known to date) is remarkable, indicating that probably they are also very massive stars. New optical spectroscopic observations of WR20aa suggest an intermediate O2 If*/WN6 spectral type. Based on a mosaic made from the 3.6 microns Spitzer IRAC images of the region including part of the RCW49 complex, we studied the spatial location of the new emission line stars, finding that WR20aa and WR20c are well displaced from the centre of Westerlund 2, being placed at ~ 36 pc (15.7 arcmin) and ~ 58 pc (25.0 arcmin) respectively, for an assumed heliocentric distance of 8 kpc. Also very remarkably, a radius vector connecting both stars would intercept the Westerlund 2 cluster exactly at the place where its stellar density reaches a maximum. We consequently postulate a scenario in which WR20aa and WR20c had a common origin somewhere in the cluster core, being ejected from their birthplace by dynamical interacion with some other very massive objects, perhaps during some earlier stage of the cluster evolution.
52 - Yin-Bi Li , A-Li Luo , Gang Zhao 2018
In this paper, we report the discovery of a new late-B type unbound hyper-runaway star (LAMOST-HVS4) from the LAMOST spectroscopic surveys. According to its atmospheric parameters, it is either a B-type main sequence (MS) star or a blue horizontal branch (BHB) star. Its Galactocentric distance and velocity are 30.3 +/- 1.6 kpc and 586 +/- 7 km/s if it is an MS star, and they are 13.2 +/- 3.7 kpc and 590 +/- 7 km/s if a BHB star. We track its trajectories back, and find that the trajectories intersect with the Galactic disk and the Galactic center lies outside of the intersection region at the 3 sigma confidence level. We investigate a number of mechanisms that could be responsible for the ejection of the star, and find that it is probably ejected from the Galactic disk by supernova explosion or multiple-body interactions in dense young stellar clusters.
A local dwarf galaxy, NGC 5253, has a young super star cluster that may provide an example of highly efficient star formation. Here we report the detection and imaging, with the Submillimeter Array, of the J= 3-2 rotational transition of CO at the location of the massive cluster associated with the supernebula. The gas cloud is hot, dense, quiescent, and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by Wolf-Rayet stars within the embedded star cluster. Its star formation efficiency exceeds 50%, ten times higher than clouds in the Milky Way: this cloud is a factory of stars and soot. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.
A previous spectroscopic study identified the very massive O2 III star VFTS 16 in the Tarantula Nebula as a runaway star based on its peculiar line-of-sight velocity. We use the Gaia DR2 catalog to measure the relative proper motion of VFTS 16 and nearby bright stars to test if this star might have been ejected from the central cluster, R136, via dynamical ejection. We find that the position angle and magnitude of the relative proper motion (0.338 +/- 0.046 mas/yr, or approximately 80 +- 11 km/s) of VFTS 16 are consistent with ejection from R136 approximately 1.5 +/- 0.2 Myr ago, very soon after the cluster was formed. There is some tension with the presumed age of VFTS 16 that, from published stellar parameters, cannot be greater than 0.9 +0.3/-0.2 Myr. Older ages for this star would appear to be prohibited due to the absence of He I lines in its optical spectrum, since this sets a firm lower limit on its effective temperature. The dynamical constraints may imply an unusual evolutionary history for this object, perhaps indicating it is a merger product. Gaia DR2 also confirms that another very massive star in the Tarantula Nebula, VFTS 72 (alias BI253; O2 III-V(n)((f*)), is also a runaway on the basis of its proper motion as measured by Gaia. While its tangential proper motion (0.392 +/-0.062 mas/yr or 93 +/-15 km/s) would be consistent with dynamical ejection from R136 approximately 1 Myr ago, its position angle is discrepant with this direction at the 2$sigma$ level. From their Gaia DR2 proper motions we conclude that the two ~100 solar mass O2 stars, VFTS 16 and VFTS72, are fast runaway stars, with space velocities of around 100 km/s relative to R136 and the local massive star population. The dynamics of VFTS16 are consistent with it having been ejected from R136, and this star therefore sets a robust lower limit on the age of the central cluster of ~1.3 Myr.
216 - A. Roman-Lopes 2013
In this paper I report the discovery of an O2If*/WN6 star probably still partially embedded in its parental cocoon in the star-burst cluster NGC 3603. From the observed size of the associated compact Hii region, it was possible to derive a probable dynamic age of no more than 600,000 years. Using the computed visual extinction value Av ~ 6 magnitudes, an absolute visual magnitude Mv =-5.7 mag is obtained, which for the assumed heliocentric distance of 7.6 kpc results in a bolometric luminosity of ~ 8x10^5 Lsun. Also from the V magnitude and the V-I color of the new star, and previous models for NGC3603s massive star population, we estimate its mass for the binary (O2If*/WN6 + O3If) and the single-star case (O2If*/WN6). In the former, it was found that the initial mass of each component possibly exceeded 80 Msun and 40 Msun, while in the latter MTT 58s initial mass possibly was in excess of 100 Msun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا