Do you want to publish a course? Click here

Analysis of Solar Neutrino Data from SuperKamiokande I and II: Back to the Solar Neutrino Problem

254   0   0.0 ( 0 )
 Added by Hans J. Haubold
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We are going back to the roots of the original solar neutrino problem: analysis of data from solar neutrino experiments. The application of standard deviation analysis (SDA) and diffusion entropy analysis (DEA) to the SuperKamiokande I and II data reveals that they represent a non-Gaussian signal. The Hurst exponent is different from the scaling exponent of the probability density function and both Hurst exponent and scaling exponent of the probability density function of the SuperKamiokande data deviate considerably from the value of 0.5 which indicates that the statistics of the underlying phenomenon is anomalous. To develop a road to the possible interpretation of this finding we utilize Mathais pathway model and consider fractional reaction and fractional diffusion as possible explanations of the non-Gaussian content of the SuperKamiokande data.



rate research

Read More

131 - J.F. Beacom , P. Vogel 1999
We find that magnetic neutrino-electron scattering is unaffected by oscillations for vacuum mixing of Dirac neutrinos with only diagonal moments and for Majorana neutrinos with two flavors. For MSW mixing, these cases again obtain, though the effective moments can depend on the neutrino energy. Thus, e.g., the magnetic moments measured with $bar{ u}_e$ from a reactor and $ u_e$ from the Sun could be different. With minimal assumptions, we find a new limit on $mu_{ u}$ using the 825-days SuperKamiokande solar neutrino data: $|mu_{ u}| le 1.5times 10^{-10} mu_B$ at 90% CL, comparable to the existing reactor limit.
We show that spin flavor precession solutions to the solar neutrino problem, although preferred by the latest solar data, are ruled out by the first results from the KamLAND reactor experiment, at more than 3_sigma. An illustrative chi2 plot comparing these descriptions with oscillations is given.
We perform a quantitative analysis of the solar composition problem by using a statistical approach that allows us to combine the information provided by helioseimic and solar neutrino data in an effective way. We include in our analysis the helioseismic determinations of the surface helium abundance and of the depth of the convective envelope, the measurements of the $^7{rm Be}$ and $^8{rm B}$ neutrino fluxes, the sound speed profile inferred from helioseismic frequencies. We provide all the ingredients to describe how these quantities depend on the solar surface composition and to evaluate the (correlated) uncertainties in solar model predictions. We include errors sources that are not traditionally considered such as those from inversion of helioseismic data. We, then, apply the proposed approach to infer the chemical composition of the Sun. We show that the opacity profile of the Sun is well constrained by the solar observational properties. In the context of a two parameter analysis in which elements are grouped as volatiles (i.e. C, N, O and Ne) and refractories (i.e Mg, Si, S, Fe), the optimal composition is found by increasing the the abundance of volatiles by $left( 45pm 4right)%$ and that of refractories by $left( 19pm 3right)%$ with respect to the values provided by AGSS09. This corresponds to the abundances $varepsilon_{rm O}=8.85pm 0.01$ and $varepsilon_{rm Fe}=7.52pm0.01$. As an additional result of our analysis, we show that the observational data prefer values for the input parameters of the standard solar models (radiative opacities, gravitational settling rate, the astrophysical factors $S_{34}$ and $S_{17}$) that differ at the $sim 1sigma$ level from those presently adopted.
59 - V.Berezinsky , G.Fiorentini , 1998
The excess of solar-neutrino events above 13 MeV that has been recently observed by Superkamiokande can be explained by vacuum oscillations (VO). If the boron neutrino flux is 20% smaller than the standard solar model (SSM) prediction and the chlorine signal is assumed 30% (or 3.5 sigmas) higher than the measured one, there exists a VO solution that reproduces both the observed boron neutrino spectrum, including the high energy distortion, and the other measured neutrino rates. This solution might already be testable by the predicted anomalous seasonal variation of the gallium signal. Its most distinct signature, a large anomalous seasonal variation of Be7 neutrino flux, can be easily observed by the future detectors, BOREXINO and LENS.
357 - V. Berezinsky , M.Lissia 2001
With SNO data on electron-neutrino flux from the sun, it is possible to derive the $ u_e$ survival probability $P_{ee}(E)$ from existing experimental data of Super-Kamiokande, gallium experiments and Homestake. The combined data of SNO and Super-Kamiokande provide boron $ u_e$ flux and the total flux of all active boron neutrinos, giving thus $P_{ee}(E)$ for boron neutrinos. The Homestake detector, after subtraction of the signal from boron neutrinos, gives the flux of Be+CNO neutrinos, and $P_{ee}$ for the corresponding energy interval, if the produced flux is taken from the Standard Solar Model (SSM). Gallium detectors, GALLEX, SAGE and GNO, detect additionally pp-neutrinos. The pp-flux can be calculated subtracting from the gallium signal the rate due to boron, beryllium and CNO neutrinos. The ratio of the measured $pp$-neutrino flux to that predicted by the SSM gives the survival probability for $pp$-neutrinos. Comparison with theoretical survival probabilities shows that the best (among known models) fit is given by LMA and LOW solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا