Do you want to publish a course? Click here

Changing Identities and Evolving Conceptions of Inquiry through Teacher-Driven Professional Development

137   0   0.0 ( 0 )
 Added by Ben Van Dusen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

This STEM education study investigates the Streamline to Mastery professional development program, in which teachers work in partnership with university researchers to design professional development opportunities for themselves and for fellow teachers. Our research describes the process of teacher professional growth both through changes in agency and through a shared pursuit of an improved understanding of classroom scientific inquiry. Videos, emails, lesson reflections, survey responses, and interviews were analyzed to glean insight into changes in teacher discourse around inquiry and into their shifts in participation within the professional community they established. Implications for professional development in STEM education are discussed.



rate research

Read More

In a climate where teachers feel deprofessionalized at the hands of regulations, testing, and politics, it is vital that teachers become empowered both in their own teaching and as agents of change. This physics education research study investigates the Streamline to Mastery professional development program, in which the teachers design professional development opportunities for themselves and for fellow teachers. The research reported here describes the process of teacher professional growth through changes in roles and identities. Videos, emails, and interviews were analyzed to glean insight into practice and participation shifts as these physical science teachers formed a community and engaged in their own classroom research. Implications for the role of PER in teacher professional development and teacher preparation will be discussed.
The need for highly qualified physics teachers in the U.S. is well established, and reform efforts are underway to develop novel and innovative teacher professional development experiences to improve the quality of K-12 physics education. Streamline to Mastery is an NSF-funded, learner-centered professional development program that seeks to capitalize on teachers knowledge and experience to move physics teachers toward mastery in their fields. Teacher participants in this teacher-driven program choose their own goals and areas of growth. One of these areas has been the development and implementation of inquiry-oriented curriculum, as well as the adaptation of traditional lessons toward a greater inquiry orientation. Results indicate that teachers conceptions of inquiry teaching and learning have become more expert-like as they have engaged in teacher participant-driven experiences in the pursuit of greater understanding and more effective classroom practice.
132 - Carmen Fies , Chris Packham 2021
Secondary school teachers often lack the necessary content background in astronomy to teach such a course confidently. Our theory of change postits that an increased confidence level will increase student retention in astronomy and related STEM fields. Beyond the science content knowledge though, teachers need opportunities to embed the content in pedagogically sound practices, and with appropriate technology tools. We report on our interdisciplinary approach to designing, developing, fielding, and iteratively improving the San Antonio Teacher Training Astronomy Academy (SATTAA), an annually offered Teacher Professional Development program. In particular, we present how our separate areas of expertise, in content and in STEM pedagogy, led to a synergistic process of teacher professional development that has now resulted in three cohorts of alumni. In this paper, we share our interdisciplinary processes and lessons learned; program metrics are described elsewhere in detail.
This study involves a theory-based teacher professional development model that was created to address two problems. First, dominant modes of science teacher professional development have been inadequate in helping teachers create learning environments that engage students in the practices of science, as called for most recently by the NGSS. Second, there is a lack of teacher presence and voice in the national dialogue on education reform and assessment. In this study, teachers led and participated in a professional community focusing on STEM education research. In this community, teachers became increasingly responsible for designing and enacting learning experiences for themselves and their colleagues. We investigated the characteristics of the science teachers learning process. Findings suggest that teachers who participated in this model generated knowledge and practices about teaching and learning while simultaneously developing identities and practices as education reform advocates and agents of educational change.
The NASA/IPAC Teacher Archive Research Program (NITARP) provides a year-long authentic astronomy research project by partnering a research astronomer with small groups of educators. NITARP has worked with a total of 103 educators since 2005. In this paper, surveys are explored that were obtained from 74 different educators, at up to four waypoints during the course of 13 months, from the class of 2010 through the class of 2017; those surveys reveal how educator participants describe the major changes and outcomes in themselves fostered by NITARP. Three-quarters of the educators self-report some or major changes in their understanding of the nature of science. The program provides educators with experience collaborating with astronomers and other educators, and forges a strong link to the astronomical research community; the NITARP community of practice encourages and reinforces these linkages. During the experience, educators get comfortable with learning complex new concepts, with ~40% noting in their surveys that their approach to learning has changed. Educators are provided opportunities for professional growth; at least 12% have changed career paths substantially in part due to the program, and 14% report that the experience was life changing. At least 60% express a desire to include richer, more authentic science activities in their classrooms. This work illuminates what benefits the program brings to its participants; the NITARP approach could be mirrored in similar professional development (PD) programs in other STEM subjects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا