No Arabic abstract
We report the results from a detailed analysis of an archival XMM-Newton observation of the X-ray source XGPS-I J183251-100106, which has been suggested as a promising magnetic cataclysmic variable candidate based on its optical properties. A single periodic signal of 1.5 hrs is detected from all EPIC cameras on board XMM-Newton. The phase-averaged X-ray spectrum can be well-modeled with a thermal bremsstrahlung of a temperature kT~50 keV. Both X-ray spectral and temporal behavior of this system suggest it as a eclipsing cataclysmic variable of AM Herculis (or polar) type.
With the Suzaku satellite, we observed an unidentified TeV gamma-ray source HESS J1741$-$302 and its surroundings. No diffuse or point-like X-ray sources are detected from the bright southern emission peak of HESS J1741$-$302. From its neighborhood, we found a new intermediate polar candidate at the position of $(alpha, delta)_{rm J2000.0} = (timeform{17h40m35.6s}, timeform{-30D14m16s})$, which is designated as Suzaku J174035.6$-$301416. The spectrum of Suzaku J174035.6$-$301416 exhibits emission lines at the energy of 6.4, 6.7 and 7.0 keV, which can be assigned as the K$alpha$ lines from neutral, He-like and H-like iron, respectively. A coherent pulsation is found at a period of 432.1 $pm$ 0.1 s. The pulse profile is quasi-sinusoidal in the hard X-ray band (4$-$8 keV), but is more complicated in the soft X-ray band (1$-$3 keV). The moderate period of pulsation, the energy flux, and the presence of the iron K$alpha$ lines indicate that Suzaku J174035.6$-$301416 is likely an intermediate polar, a subclass of magnetized white dwarf binaries (cataclysmic variables). Based on these discoveries, we give some implications on the origin of GCDX and brief comments on HESS J1741$-$302 and PSR B1737$-$30.
We report the discovery of Type I (thermonuclear) X-ray bursts from the transient source XMMU J181227.8-181234 = XTE J1812-182. We found 7 X-ray bursts in Rossi X-ray Timing Explorer observations during the 2008 outburst, confirming the source as a neutron star low mass X-ray binary. Based on the measured burst fluence and the average recurrence time of 1.4$^{+0.9}_{-0.5}$ hr, we deduce that the source is accreting almost pure helium ($X leq 0.1$) fuel. Two bursts occurred just 18 minutes apart; the first short waiting time bursts observed in a source accreting hydrogen-poor fuel. Taking into consideration the effects on the burst and persistent flux due to the inferred system inclination of $30pm{10}$ degrees, we estimate the distance to be $14pm{2}$ kpc, where we report the statistical uncertainty but note that there could be up to $20%$ variation in the distance due to systematic effects discussed in the paper. The corresponding maximum accretion rate is $0.30pm0.05$ times the Eddington limit. Based on the low hydrogen content of the accreted fuel and the short average recurrence time, we classify the source as a transient ultracompact low-mass X-ray binary.
We have discovered a persistent, but highly variable X-ray source in the nearby starburst galaxy NGC 253. The source varies at the level of a factor of about 5 in count rate on timescales of a few hours. Two long observations of the source with Chandra and XMM-Newton show suggestive evidence for the source having a period of about 14-15 hours, but the time sampling in existing data is insufficient to allow a firm determination that the source is periodic. Given the amplitude of variation and the location in a nuclear starburst, the source is likely to be a Wolf-Rayet X-ray binary, with the tentative period being the orbital period of the system. In light of the fact that we have demonstrated that careful examination of the variability of moderately bright X-ray sources in nearby galaxies can turn up candidate Wolf-Rayet X-ray binaries, we discuss the implications of Wolf-Rayet X-ray binaries for predictions of the gravitational wave source event rate, and, potentially, interpretations of the events.
Very few galactic nuclei are found to show significant X-ray quasi-periodic oscillations (QPOs). After carefully modeling the noise continuum, we find that the ~3.8 hr QPO in the ultrasoft active galactic nucleus (AGN) candidate 2XMM J123103.2+110648 was significantly detected (~5sigma) in two XMM-Newton observations in 2005, but not in the one in 2003. The QPO rms is very high and increases from ~25% in 0.2-0.5 keV to ~50% in 1-2 keV. The QPO probably corresponds to the low-frequency type in Galactic black hole X-ray binaries, considering its large rms and the probably low mass (~10^5 msun) of the black hole in the nucleus. We also fit the soft X-ray spectra from the three XMM-Newton observations and find that they can be described with either pure thermal disk emission or optically thick low-temperature Comptonization. We see no clear X-ray emission from the two Swift observations in 2013, indicating lower source fluxes than those in XMM-Newton observations.
We report on the detection and follow-up multi-wavelength observations of the new X-ray transient MAXI J1807+132 with the MAXI/GSC, Swift, and ground-based optical telescopes. The source was first recognized with the MAXI/GSC on 2017 March 13. About a week later, it reached the maximum intensity ($sim$10 mCrab in 2-10 keV), and then gradually faded in $sim$10 days by more than one order of magnitude. Time-averaged Swift/XRT spectra in the decaying phase can be described by a blackbody with a relatively low temperature (0.1-0.5 keV), plus a hard power-law component with a photon index of $sim$2. These spectral properties are similar to those of neutron star low-mass X-ray binaries (LMXBs) in their dim periods. The blackbody temperature and the radius of the emission region varied in a complex manner as the source became dimmer. The source was detected in the optical wavelength on March 27-31 as well. The optical flux decreased monotonically as the X-ray flux decayed. The correlation between the X-ray and optical fluxes is found to be consistent with those of known neutron star LMXBs, supporting the idea that the source is likely to be a transient neutron star LMXB.