No Arabic abstract
The corona of the Sun is dominated by emission from loop-like structures. When observed in X-ray or extreme ultraviolet emission, these million K hot coronal loops show a more or less constant cross section. In this study we show how the interplay of heating, radiative cooling, and heat conduction in an expanding magnetic structure can explain the observed constant cross section. We employ a three-dimensional magnetohydrodynamics (3D MHD) model of the corona. The heating of the coronal plasma is the result of braiding of the magnetic field lines through footpoint motions and subsequent dissipation of the induced currents. From the model we synthesize the coronal emission, which is directly comparable to observations from, e.g., the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO). We find that the synthesized observation of a coronal loop seen in the 3D data cube does match actually observed loops in count rate and that the cross section is roughly constant, as observed. The magnetic field in the loop is expanding and the plasma density is concentrated in this expanding loop; however, the temperature is not constant perpendicular to the plasma loop. The higher temperature in the upper outer parts of the loop is so high that this part of the loop is outside the contribution function of the respective emission line(s). In effect, the upper part of the plasma loop is not bright and thus the loop actually seen in coronal emission appears to have a constant width. From this we can conclude that the underlying field-line-braiding heating mechanism provides the proper spatial and temporal distribution of the energy input into the corona --- at least on the observable scales.
Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniatu
Flare associated coronal shock waves sometimes interact with solar prominences leading to large amplitude prominence oscillations. Such prominence activation gives us unique opportunity to track time evolution of shock-cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock-cloud interaction is extensively studied, coronal shock-solar prominence interaction is rarely studied in the context of shock-cloud interaction. Associated with X5.4 class solar flare occurred on 7 March, 2012, a globally propagated coronal shock wave interacted with a polar prominence leading to large amplitude prominence oscillation. In this paper, we studied bulk acceleration and excitation of internal flow of the shocked prominence using three-dimensional MHD simulations. We studied eight magnetohydrodynamic (MHD) simulation runs with different mass density structure of the prominence, and one hydrodynamic simulation run, and compared the result. In order to compare observed motion of activated prominence with corresponding simulation, we also studied prominence activation by injection of triangular shaped coronal shock. We found that magnetic tension force mainly accelerate (and then decelerate) the prominence. The internal flow, on the other hand, is excited during the shock front sweeps through the the prominence and damps almost exponentially. We construct phenomenological model of bulk momentum transfer from shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence-activation model, we diagnosed physical parameters of coronal shock wave. The estimated energy of the coronal shock is several percent of total energy released during the X5.4 flare.
The distribution of magnetic flux across the solar photosphere results in a complex web of coronal magnetic field structures. To understand this complexity, the magnetic skeleton of the coronal field can be calculated. The skeleton highlights the separatrix surfaces that divide the field into topologically distinct regions, allowing open-field regions on the solar surface to be located. Furthermore, separatrix surfaces and their intersections (separators) are important likely energy release sites. This paper investigates, throughout the solar cycle, the nature of coronal magnetic-field topologies that arise under the potential-field source-surface approximation. In particular, we characterise the typical global fields at solar maximum and minimum. Global magnetic fields are extrapolated from observed Kitt Peak and SOLIS synoptic magnetograms, from Carrington rotations 1645 to 2144, using the potential-field source-surface model. Hence, variations in the coronal skeleton are studied over three solar cycles. Key building blocks which make up magnetic fields are identified and classified according to the nature of their separatrix surfaces. The magnetic skeleton reveals that, at solar maximum, the global coronal field involves a multitude of topological structures at all latitudes. Many open-field regions exist originating anywhere on the photosphere. At solar minimum, the coronal topology is heavily influenced by the solar dipole. A strong dipole results in a simple large-scale structure involving just two large polar open-field regions, but, at short radial distances between plus or minus 60 deg latitude, the small-scale topology is complex. If the solar dipole if weak, as in the recent minimum, then the low-latitude quiet-sun magnetic fields may be globally significant enough to create many disconnected open-field regions at low latitudes, in addition to the two polar open-field regions.
Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in active region coronal loops, including (i) flare-induced slow mode oscillations, (ii) fast kink mode oscillations, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvenic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide readers a useful guidance on further studies of their interested topics.
The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, $R_omega$, where the local plasma frequency eqals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10 -- 90 MHz) solar radio emission originating from the middle and upper corona. We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer $R_omega$, and a scale height temperature, $T$. These results can be combined into coronal density and temperature profiles. We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with $R_omega$ and $T$ as fitting parameters. In the low corona, $R_omega < 1.5$ solar radii, we find high scale height temperatures up to 2.2e6 K, much more than the brightness temperatures usually found there. But if all $R_omega$ values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or EUV data. Future observations will provide continuous frequency coverage, eliminating the need for local hydrostatic density models.