Do you want to publish a course? Click here

IPHAS J062746.41+014811.3: a deeply eclipsing intermediate polar

172   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present time-resolved photometry of a cataclysmic variable discovered in the Isaac Newton Telescope Photometric Halpha Survey of the northern galactic plane, IPHAS J062746.41+014811.3 and classify the system as the fourth deeply eclipsing intermediate polar known with an orbital period of Porb=8.16 h, and spin period of Pspin=2210 s. The system shows mild variations of its brightness, that appear to be accompanied by a change in the amplitude of the spin modulation at optical wavelengths, and a change in the morphology of the eclipse profile. The inferred magnetic moment of the white dwarf is mu_wd = 6-7 x 10^33 Gcm^3, and in this case IPHAS J0627 will either evolve into a short-period EX Hya-like intermediate polar with a large PspinPorb ratio, or, perhaps more likely, into a synchronised polar. Swift observations show that the system is an ultraviolet and X-ray source, with a hard X-ray spectrum that is consistent with those seen in other intermediate polars. The ultraviolet light curve shows orbital modulation and an eclipse, while the low signal-to-noise ratio X-ray light curve does not show a significant modulation on the spin period. The measured X-ray flux is about an order of magnitude lower than would be expected from scaling by the optical fluxes of well-known X-ray selected intermediate polars.



rate research

Read More

We present the results of a photometric and spectroscopic analysis of the Galactic Bulge Survey X-ray source CXOGBS J174954.5-294335 (hereafter, referred to as CX19). CX19 is a long period, eclipsing intermediate polar type cataclysmic variable with broad, single-peaked Balmer and Paschen emission lines along with HeII $lambda4686$ and Bowen blend emission features. With coverage of one full and two partial eclipses and archival photometry, we determine the ephemeris for CX19 to be HJD(eclipse) = 2455691.8581(5) + 0.358704(2)$times$N. We also recovered the white dwarf spin period of P$_{rm spin}$ = 503.32(3) seconds which gives a P$_{rm spin}$/P$_{rm orb}$ = 0.016(6), comparable to several confirmed, long period intermediate polars. CX19 also shows a clear X-ray eclipse in the 0.3-8.0 keV range observed with Chandra. Two optical outbursts were observed lasting between 6-8 hours (lower limits) reaching $sim$1.3 mags in amplitude. The outbursts, both in duration and magnitude, the accretion disc dominated spectra and hard X-ray emission are reminiscent of the intermediate polar V1223 Sgr sharing many of the same characteristics. If we assume a main sequence companion, we estimate the donor to be an early G-type star and find a minimum distance of $d approx$ 2.1 kpc and a 0.5-10.0 keV X-ray luminosity upper limit of 2.0 $times$ 10$^{33}$ erg s$^{-1}$. Such an X-ray luminosity is consistent with a white dwarf accretor in a magnetic cataclysmic variable system. To date, CX19 is only the second deeply-eclipsing intermediate polar with X-ray eclipses and the first which is optically accessible.
We present high speed optical, spectroscopic and Swift X-ray observations made during the dwarf nova superoutburst of CC Scl in November 2011. An orbital period of 1.383 h and superhump period of 1.443 h were measured, but the principal new finding is that CC Scl is a previously unrecognised intermediate polar, with a white dwarf spin period of 389.49 s which is seen in both optical and Swift X-ray light curves only during the outburst. In this it closely resembles the old nova GK Per, but unlike the latter has one of the shortest orbital periods among intermediate polars.
We present the discovery of a magnetic field on the white dwarf component in the detached post common envelope binary (PCEB) CC Cet. Magnetic white dwarfs in detached PCEBs are extremely rare, in contrast to the high incidence of magnetism in single white dwarfs and cataclysmic variables. We find Zeeman-split absorption lines in both ultraviolet Hubble Space Telescope (HST) spectra and archival optical spectra of CC Cet. Model fits to the lines return a mean magnetic field strength of approximately 600-700 kG. Differences in the best-fit magnetic field strength between two separate HST observations and the high v sin i of the lines indicate that the white dwarf is rotating with a period ~0.5 hours, and that the magnetic field is not axisymmetric about the spin axis. The magnetic field strength and rotation period are consistent with those observed among the intermediate polar class of cataclysmic variable, and we compute stellar evolution models that predict CC Cet will evolve into an intermediate polar in 7-17 Gyr. Among the small number of known PCEBs containing a confirmed magnetic white dwarf, CC Cet is the hottest (and thus youngest), with the weakest field strength, and cannot have formed via the recently proposed crystallisation/spin-up scenario. In addition to the magnetic field measurements, we update the atmospheric parameters of the CC Cet white dwarf via model spectra fits to the HST data and provide a refined orbital period and ephemeris from TESS photometry.
We present time-series spectroscopy and photometry of Gaia DR2 6097540197980557440, a new deeply-eclipsing hot subdwarf B (sdB) + M dwarf (dM) binary. We discovered this object during the course of the Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project, which aims to find new eclipsing sdB+dM binaries (HW Vir systems) and increase the small sample of studied systems. In addition to the primary eclipse, which is in excess of $sim$5 magnitudes in the optical, the light curve also shows features typical for other HW Vir binaries such as a secondary eclipse and strong reflection effect from the irradiated, cool companion. The orbital period is 0.127037 d ($sim$3 hr), falling right at the peak of the orbital period distribution of known HW Vir systems. Analysis of our time-series spectroscopy yields a radial velocity semi-amplitude of $K_{rm sdB}=100.0pm2.0,{rm km,s}^{-1}$, which is amongst the fastest line-of-sight velocities found to date for an HW Vir binary. State-of-the-art atmospheric models that account for deviations from local thermodynamic equilibrium are used to determine the atmospheric parameters of the sdB. Although we cannot claim a unique light curve modeling solution, the best-fitting model has an sdB mass of $M_{rm sdB} = 0.47pm0.03,M_{odot}$ and a companion mass of $M_{rm dM} = 0.18pm0.01,M_{odot}$. The radius of the companion appears to be inflated relative to theoretical mass-radius relationships, consistent with other known HW Vir binaries. Additionally, the M dwarf is one of the most massive found to date amongst this type of binary.
138 - S.-B. Qian , L. Liu , W.-P. Liao 2011
Using the precise times of mid-egress of the eclipsing polar HU Aqr, we discovered that this polar is orbited by two or more giant planets. The two planets detected so far have masses of at least 5.9 and 4.5,M_{Jup}. Their respective distances from the polar are 3.6 AU and 5.4 AU with periods of 6.54 and 11.96 years, respectively. The observed rate of period decrease derived from the downward parabolic change in O-C curve is a factor 15 larger than the value expected for gravitational radiation. This indicates that it may be only a part of a long-period cyclic variation, revealing the presence of one more planet. It is interesting to note that the two detected circumbinary planets follow the Titus-Bode law of solar planets with n=5 and 6. We estimate that another 10 years of observations will reveal the presence of the predicted third planet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا