Do you want to publish a course? Click here

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices

191   0   0.0 ( 0 )
 Added by Luqiao Liu
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that direct current in a tantalum microstrip can induce steady-state magnetic oscillations in an adjacent nanomagnet through spin torque from the spin Hall effect (SHE). The oscillations are detected electrically via a magnetic tunnel junction (MTJ) contacting the nanomagnet. The oscillation frequency can be controlled using the MTJ bias to tune the magnetic anisotropy. In this 3-terminal device the SHE torque and the MTJ bias therefore provide independent controls of the oscillation amplitude and frequency, enabling new approaches for developing tunable spin torque nano-oscillators.



rate research

Read More

Recent research has indicated that introducing impurities that increase the resistivity of Pt can enhance the efficiency of the spin Hall torque it generates. Here we directly demonstrate the usefulness of this strategy by fabricating prototype 3-terminal in-plane-magnetized magnetic tunnel junctions that utilize the spin Hall torque from a $rm{Pt}_{85}rm{Hf}_{15}$ alloy, and measuring the critical currents for switching. We find that $rm{Pt}_{85}rm{Hf}_{15}$ reduces the switching current densities compared to pure Pt by approximately a factor of 2 for both quasi-static ramped current biases and nanosecond-scale current pulses, thereby proving the feasibility of this approach to assist in the development of efficient embedded magnetic memory technologies.
We study the tunneling magneto thermo power (TMTP) in CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars. Thermal gradients across the junctions are generated by a micropatterned electric heater line. Thermo power voltages up to a few tens of muV between the top and bottom contact of the nanopillars are measured which scale linearly with the applied heating power and hence with the applied temperature gradient. The thermo power signal varies by up to 10 muV upon reversal of the relative magnetic configuration of the two CoFeB layers from parallel to antiparallel. This signal change corresponds to a large spin-dependent Seebeck coefficient of the order of 100 muV/K and a large TMTP change of the tunnel junction of up to 90%.
Magnetic tunnel junctions with perpendicular anisotropy form the basis of the spin-transfer torque magnetic random-access memory (STT-MRAM), which is non-volatile, fast, dense, and has quasi-infinite write endurance and low power consumption. Based on density functional theory (DFT) calculations, we propose an alternative design of magnetic tunnel junctions comprising Fe(n)Co(m)Fe(n)/MgO storage layers with greatly enhanced perpendicular magnetic anisotropy (PMA) up to several mJ/m2, leveraging the interfacial perpendicular anisotropy of Fe/MgO along with a stress-induced bulk PMA discovered within bcc Co. This giant enhancement dominates the demagnetizing energy when increasing the film thickness. The tunneling magnetoresistance (TMR) estimated from the Julliere model is comparable with that of the pure Fe/MgO case. We discuss the advantages and pitfalls of a real-life fabrication of the structure and propose the Fe(3ML)Co(4ML)Fe(3ML) as a storage layer for MgO-based STT-MRAM cells. The large PMA in strained bcc Co is explained in the framework of Brunos model by the MgO-imposed strain and consequent changes in the energies of dyz and dz2 minority-spin bands.
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The domain wall moves along or against the current flow depending on the underlayer material. The direction to which the domain wall moves is associated with the chirality of the domain wall spiral formed in these heterostructures. The one-dimensional model is used to describe the experimental results and extract parameters such as the Dzyaloshinskii-Moriya exchange constant which is responsible for the formation of the domain wall spiral. Fascinating effects arising from the control of interfaces in magnetic heterostructures are described.
Current-induced spin-transfer torques (STT) and spin-orbit torques (SOT) enable the electrical switching of magnetic tunnel junctions (MTJs) in nonvolatile magnetic random access memories. In order to develop faster memory devices, an improvement of the timescales underlying the current driven magnetization dynamics is required. Here we report all-electrical time-resolved measurements of magnetization reversal driven by SOT in a three-terminal MTJ device. Single-shot measurements of the MTJ resistance during current injection reveal that SOT switching involves a stochastic two-step process consisting of a domain nucleation time and propagation time, which have different genesis, timescales, and statistical distributions compared to STT switching. We further show that the combination of SOT, STT, and voltage control of magnetic anisotropy (VCMA) leads to reproducible sub-ns switching with a spread of the cumulative switching time smaller than 0.2 ns. Our measurements unravel the combined impact of SOT, STT, and VCMA in determining the switching speed and efficiency of MTJ devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا