Do you want to publish a course? Click here

Tracking Down the Source Population Responsible for the Unresolved Cosmic 6-8 keV Background

69   0   0.0 ( 0 )
 Added by Sharon Xuesong Wang
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the 4 Ms Chandra Deep Field-South (CDF-S) survey, we have identified a sample of 6845 X-ray undetected galaxies that dominates the unresolved ~ 20-25% of the 6-8 keV cosmic X-ray background (XRB). This sample was constructed by applying mass and color cuts to sources from a parent catalog based on GOODS-South HST z-band imaging of the central 6-radius area of the 4 Ms CDF-S. The stacked 6-8 keV detection is significant at the 3.9 sigma level, but the stacked emission was not detected in the 4-6 keV band which indicates the existence of an underlying population of highly obscured active galactic nuclei (AGNs). Further examinations of these 6845 galaxies indicate that the galaxies on the top of the blue cloud and with redshifts of 1 < z < 3, magnitudes of 25 < z_850 < 28, and stellar masses of 2E8 < M_star/M_sun < 2E9 make the majority contributions to the unresolved 6-8 keV XRB. Such a population is seemingly surprising given that the majority of the X-ray detected AGNs reside in massive (> ~1E10 M_sun) galaxies. We discuss constraints upon this underlying AGN population, supporting evidence for relatively low-mass galaxies hosting highly obscured AGNs, and prospects for further boosting the stacked signal.



rate research

Read More

97 - A. Moretti 2012
We study the spectral properties of the unresolved cosmic X-ray background (CXRB) in the 1.5-7.0 keV energy band with the aim of providing an observational constraint on the statistical properties of those sources that are too faint to be individually probed. We made use of the Swift X-ray observation of the Chandra Deep Field South complemented by the Chandra data. Exploiting the lowest instrument background (Swift) together with the deepest observation ever performed (Chandra) we measured the unresolved emission at the deepest level and with the best accuracy available today. We find that the unresolved CXRB emission can be modeled by a single power law with a very hard photon index Gamma=0.1+/-0.7 and a flux of 5(+/-3)E-12 cgs in the 2.0-10 keV energy band (1 sigma error). Thanks to the low instrument background of the Swift-XRT, we significantly improved the accuracy with respect to previous measurements. These results point towards a novel ingredient in AGN population synthesis models, namely a positive evolution of the Compton-thick AGN population from local Universe to high redshift.
While the upcoming telescopes will reveal correspondingly fainter, more distant galaxies, a question will persist: what more is there that these telescopes cannot see? One answer is the source-subtracted Cosmic Infrared Background (CIB). The CIB is comprised of the collective light from all sources remaining after known, resolved sources are accounted for. Ever-more-sensitive surveys will identify the brightest of these, allowing them to be removed, and - like peeling layers off an onion - reveal deeper layers of the CIB. In this way it is possible to measure the contributions from populations not accessible to direct telescopic observation. Measurement of fluctuations in the source-subtracted CIB, i.e., the spatial power spectrum of the CIB after subtracting resolved sources, provides a robust means of characterizing its faint, and potentially new, populations. Studies over the past 15 years have revealed source-subtracted CIB fluctuations on scales out to ~100 which cannot be explained by extrapolating from known galaxy populations. Moreover, they appear highly coherent with the unresolved Cosmic X-ray Background, hinting at a significant population of accreting black holes among the CIB sources. Characterizing the source-subtracted CIB with high accuracy, and thereby constraining the nature of the new populations, is feasible with upcoming instruments and would produce critically important cosmological information in the next decade. New coextensive deep and wide-area near-infrared, X-ray, and microwave surveys will bring decisive opportunities to examine, with high fidelity, the spatial spectrum and origin of the CIB fluctuations and their cross-correlations with cosmic microwave and X-ray backgrounds, and determine the formation epochs and the nature of the new sources (stellar nucleosynthetic or accreting black holes).
We describe an upgrade to the Cosmic Background Imager instrument to increase its surface brightness sensitivity at small angular scales. The upgrade consisted of replacing the thirteen 0.9-m antennas with 1.4-m antennas incorporating a novel combination of design features, which provided excellent sidelobe and spillover performance for low manufacturing cost. Off-the-shelf spun primaries were used, and the secondary mirrors were oversized and shaped relative to a standard Cassegrain in order to provide an optimum compromise between aperture efficiency and low spillover lobes. Low-order distortions in the primary mirrors were compensated for by custom machining of the secondary mirrors. The secondaries were supported on a transparent dielectric foam cone to minimize scattering. The antennas were tested in the complete instrument, and the beam shape and spillover noise contributions were as expected. We demonstrate the performance of the telescope and the inter-calibration with the previous system using observations of the Sunyaev-Zeldovich effect in the cluster Abell 1689. The enhanced instrument has been used to study the cosmic microwave background, the Sunyaev-Zeldovich effect and diffuse Galactic emission.
260 - G. Ghisellini 2013
We discuss how the interaction between the electrons in a relativistic jet and the Cosmic Microwave Background (CMB) affects the observable properties of radio-loud AGN at early epochs. At high z the magnetic energy density in the radio lobes of powerful radio-loud quasars can be exceeded by the energy density of the CMB (because of its (1+z)^4 dependance). In this case, relativistic electrons cool preferentially by scattering off CMB photons, rather than by synchrotron. Thus, sources sharing the same intrinsic properties have different extended radio and X-ray luminosities when located at different z: more distant sources are less luminous in radio and more luminous in X-rays than their closer counterparts. Instead, in compact regions where the local magnetic field still exceeds the CMB in terms of energy density, synchrotron radiation would be unaffected by the presence of the CMB. Such regions include the compact inner jet and the so-called hot spots in the radio lobes. The decrease in radio luminosity is larger in misaligned sources, whose radio flux is dominated by the extended isotropic component. These sources can fail detection in current flux limited radio surveys, and therefore they are possibly under-represented in the associated samples. As the cooling time is longer for lower energy electrons, the radio luminosity deficit due to the CMB photons is less important at low radio frequencies. Therefore objects not detected so far in current surveys at a few GHz could be picked up by low frequency deep surveys, such as LOFAR and SKA. Until then, we can estimate the number of high redshift radio-loud AGNs through the census of their aligned proxies, i.e., blazars. Indeed, their observed radio emission arises in the inner and strongly magnetized compact core of the relativistic jet, and not affected by inverse Compton scattering off CMB photons.
We extend our earlier work on X-ray source stacking in the deep XMM-Newton observation of the Lockman Hole, to the 2 Ms Chandra Deep Field North and the 1 Ms Chandra Deep Field South. The XMM-Newton work showed the resolved fraction of the X-ray background to be ~80-100 per cent at <2 keV but this decreased to only ~50 per cent above ~8 keV. The CDF-N and CDF-S probe deeper, and are able to fill-in some of the missing fraction in the 4-6 keV range, but the resolved fraction in the 6-8 keV band remains only ~60 per cent, confirming the trend seen with XMM-Newton. The missing X-ray background component has a spectral shape that is consistent with a population of highly obscured AGN at redshifts ~0.5-1.5 and with absorption column densities of ~10^23 - 10^24 cm^-2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا