Do you want to publish a course? Click here

A Lumped Model for Rotational Modes in Phononic Crystals

149   0   0.0 ( 0 )
 Added by Ying Wu
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in the band structure, and reproduces the dispersion relations. The model increases the possibilities of wave manipulation in phononic crystals. In particular, expressions, derived from the model, for eigen-frequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.



rate research

Read More

The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Dirac semimetals, the materials featured with discrete linearly crossing points (called Dirac points) between four bands, are critical states of topologically distinct phases. Such gapless topological states have been accomplished by a band-inversion mechanism, in which the Dirac points can be annihilated pairwise by perturbations without changing the symmetry of the system. Here, we report an experimental observation of Dirac points that are enforced completely by the crystal symmetry, using a nonsymmorphic three-dimensional phononic crystal. Intriguingly, our Dirac phononic crystal hosts four spiral topological surface states, in which the surface states of opposite helicities intersect gaplessly along certain momentum lines, as confirmed by our further surface measurements. The novel Dirac system may release new opportunities for studying the elusive (pseudo)relativistic physics, and also offer a unique prototype platform for acoustic applications.
115 - A. Dyson , B. K. Ridley 2020
In nanostructure electronic devices, it is well-known that the optical lattice waves in the constituent semiconductor crystals have to obey both mechanical and electrical boundary conditions at an interface. The theory of hybrid optical modes, established for cubic crystals, is here applied to hexagonal crystals. In general, the hybrid is a linear combination of a longitudinally-polarized (LO) mode, an interface mode (IF), and an interface TO mode. It is noted that the dielectric and elastic anisotropy of these crystals add significant complications to the assessment of the electro-phonon interaction. We point out that, where extreme accuracy is not needed, a cubic approximation is available. The crucial role of lattice dispersion is emphasised. In the extreme long-wavelength limit, where lattice dispersion is unimportant, the polar optical hybrid consists of an LO component plus an IF component only. In his case no fields are induced in the barrier, and there are no remote-phonon effects.
171 - Eunho Kim , Jinkyu Yang 2014
We study the formation of frequency band gaps in single column woodpile phononic crystals composed of orthogonally stacked slender cylinders. We focus on investigating the effect of the cylinders local vibrations on the dispersion of elastic waves along the stacking direction of the woodpile phononic crystals. We experimentally verify that their frequency band structures depend significantly on the bending resonant behavior of unit cells. We propose a simple theoretical model based on a discrete element method to associate the behavior of locally resonant cylindrical rods with the band gap formation mechanism in woodpile phononic crystals. The findings in this work imply that we can achieve versatile control of frequency band structures in phononic crystals by using woodpile architectures. The woodpile phononic crystals can form a new type of vibration filtering devices that offer an enhanced degree of freedom in manipulating stress wave propagation.
We give a brief review of some generalized continuum theories applied to the crystals with complicated microscopic structure. Three different ways of generalization of the classical elasticity theory are discussed. One is the high-gradient theory, another is the micropolar type theory and the third one is the many-field theory. The importance of the first two types of theories has already been established, while the theory of the third type still has to be developed. With the use of 1D and 2D examples we show for each of these theories where they can be and should be applied, separately or in a combination.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا