Do you want to publish a course? Click here

Link Prediction via Generalized Coupled Tensor Factorisation

101   0   0.0 ( 0 )
 Added by Beyza Ermis Ms
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links.



rate research

Read More

Probabilistic approaches for tensor factorization aim to extract meaningful structure from incomplete data by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to large scale models. This paper presents full Bayesian inference via VB on both single and coupled tensor factorization models. Our method can be run even for very large models and is easily implemented. It exhibits better prediction performance than existing approaches based on maximum likelihood on several real-world datasets for missing link prediction problem.
Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on improving accuracy and overlook other aspects such as robustness and interpretability. In this paper, we propose adversarial modifications for link prediction models: identifying the fact to add into or remove from the knowledge graph that changes the prediction for a target fact after the model is retrained. Using these single modifications of the graph, we identify the most influential fact for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We introduce an efficient approach to estimate the effect of such modifications by approximating the change in the embeddings when the knowledge graph changes. To avoid the combinatorial search over all possible facts, we train a network to decode embeddings to their corresponding graph components, allowing the use of gradient-based optimization to identify the adversarial modification. We use these techniques to evaluate the robustness of link prediction models (by measuring sensitivity to additional facts), study interpretability through the facts most responsible for predictions (by identifying the most influential neighbors), and detect incorrect facts in the knowledge base.
Link prediction for knowledge graphs aims to predict missing connections between entities. Prevailing methods are limited to a transductive setting and hard to process unseen entities. The recent proposed subgraph-based models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet. However, these methods require abundant known facts of training triplets and perform poorly on relationships that only have a few triplets. In this paper, we propose Meta-iKG, a novel subgraph-based meta-learner for few-shot inductive relation reasoning. Meta-iKG utilizes local subgraphs to transfer subgraph-specific information and learn transferable patterns faster via meta gradients. In this way, we find the model can quickly adapt to few-shot relationships using only a handful of known facts with inductive settings. Moreover, we introduce a large-shot relation update procedure to traditional meta-learning to ensure that our model can generalize well both on few-shot and large-shot relations. We evaluate Meta-iKG on inductive benchmarks sampled from NELL and Freebase, and the results show that Meta-iKG outperforms the current state-of-the-art methods both in few-shot scenarios and standard inductive settings.
Multi-relational graph is a ubiquitous and important data structure, allowing flexible representation of multiple types of interactions and relations between entities. Similar to other graph-structured data, link prediction is one of the most important tasks on multi-relational graphs and is often used for knowledge completion. When related graphs coexist, it is of great benefit to build a larger graph via integrating the smaller ones. The integration requires predicting hidden relational connections between entities belonged to different graphs (inter-domain link prediction). However, this poses a real challenge to existing methods that are exclusively designed for link prediction between entities of the same graph only (intra-domain link prediction). In this study, we propose a new approach to tackle the inter-domain link prediction problem by softly aligning the entity distributions between different domains with optimal transport and maximum mean discrepancy regularizers. Experiments on real-world datasets show that optimal transport regularizer is beneficial and considerably improves the performance of baseline methods.
130 - Tong Zhao , Gang Liu , Daheng Wang 2021
Learning to predict missing links is important for many graph-based applications. Existing methods were designed to learn the observed association between two sets of variables: (1) the observed graph structure and (2) the existence of link between a pair of nodes. However, the causal relationship between these variables was ignored and we visit the possibility of learning it by simply asking a counterfactual question: would the link exist or not if the observed graph structure became different? To answer this question by causal inference, we consider the information of the node pair as context, global graph structural properties as treatment, and link existence as outcome. In this work, we propose a novel link prediction method that enhances graph learning by the counterfactual inference. It creates counterfactual links from the observed ones, and our method learns representations from both of them. Experiments on a number of benchmark datasets show that our proposed method achieves the state-of-the-art performance on link prediction.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا