Do you want to publish a course? Click here

Mixed state Pauli channel parameter estimation

129   0   0.0 ( 0 )
 Added by David Collins
 Publication date 2012
  fields Physics
and research's language is English
 Authors David Collins




Ask ChatGPT about the research

The accuracy of any physical scheme used to estimate the parameter describing the strength of a single qubit Pauli channel can be quantified using standard techniques from quantum estimation theory. It is known that the optimal estimation scheme, with m channel invocations, uses initial states for the systems which are pure and unentangled and provides an uncertainty of O[1/m^(1/2)]. This protocol is analogous to a classical repetition and averaging scheme. We consider estimation schemes where the initial states available are not pure and compare a protocol involving quantum correlated states to independent state protocols analogous to classical repetition schemes. We show, that unlike the pure state case, the quantum correlated state protocol can yield greater estimation accuracy than any independent state protocol. We show that these gains persist even when the system states are separable and, in some cases, when quantum discord is absent after channel invocation. We describe the relevance of these protocols to nuclear magnetic resonance measurements.



rate research

Read More

We show that entangled measurements provide an exponential advantage in sample complexity for Pauli channel estimation, which is both a fundamental problem and a practically important subroutine for benchmarking near-term quantum devices. The specific task we consider is to learn the eigenvalues of an $n$-qubit Pauli channel to precision $varepsilon$ in $l_infty$ distance. We give an estimation protocol with an $n$-qubit ancilla that succeeds with high probability using only $O(n/varepsilon^{2})$ copies of the Pauli channel, while prove that any ancilla-free protocol (possibly with adaptive control and channel concatenation) would need at least $Omega(2^{n/3})$ rounds of measurement. We further study the advantages provided by a small number of ancillas. For the case that a $k$-qubit ancilla ($kle n$) is available, we obtain a sample complexity lower bound of $Omega(2^{(n-k)/3})$ for any non-concatenating protcol, and a stronger lower bound of $Omega(n2^{n-k})$ for any non-adaptive, non-concatenating protocol. The latter is shown to be tight by explicitly constructing a $k$-qubit-ancilla-assisted estimation protocol. We also show how to apply the ancilla-assisted estimation protocol to a practical quantum benchmarking task in a noise-resilient and sample-efficient manner, given reasonable noise assumptions. Our results provide a practically-interesting example for quantum advantages in property learning and also bring new insight for quantum benchmarking.
57 - Masahide Sasaki 2002
We investigate strategies for estimating a depolarizing channel for a finite dimensional system. Our analysis addresses the double optimization problem of selecting the best input probe state and the measurement strategy that minimizes the Bayes cost of a quadratic function. In the qubit case, we derive the Bayes optimal strategy for any finite number of input probe particles when bipartite entanglement can be formed in the probe particles.
We consider estimating the parameter associated with the qubit depolarizing channel when the available initial states that might be employed are mixed. We use quantum Fisher information as a measure of the accuracy of estimation to compare protocols which use collections of qubits in product states to one in which the qubits are in a correlated state. We show that, for certain parameter values and initial states, the correlated state protocol can yield a greater accuracy per channel invocation than the product state protocols. We show that, for some parameters and initial states, using more than two qubits and channel invocations is advantageous. These results stand in contrast to the known optimal case that uses pure initial states and a single channel invocation on a pair of entangled qubits.
209 - Yang Gao , Hwang Lee 2014
We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We compute the corresponding quantum Fisher information matrices, and find that they can be fully expressed in terms of the mean displacement and covariance matrix of the Gaussian state. Finally, we give some examples to show the utility of our analytical results.
Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the Population Recovery problem, we give an extremely simple algorithm that learns the Pauli error rates of an $n$-qubit channel to precision $epsilon$ in $ell_infty$ using just $O(1/epsilon^2) log(n/epsilon)$ applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an $O(1/epsilon)$ factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability $le 1/4$. We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability $1-eta$. In the regime of small $eta$ we extend our algorithm to achieve multiplicative precision $1 pm epsilon$ (i.e., additive precision $epsilon eta$) using just $Obigl(frac{1}{epsilon^2 eta}bigr) log(n/epsilon)$ applications of the channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا