No Arabic abstract
We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during an early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de-Sitter metric, which is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that is possible to derive dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity- antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.
We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are the dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion.
We develop a stochastic approach to study scalar field fluctuations of the inflaton field in an early inflationary universe with a black-hole (BH), which is described by an effective 4D SdS metric. Considering a 5D Ricci-flat SdS static metric, we implement a planar coordinate transformation, in order to obtain a 5D cosmological metric, from which the effective 4D SdS metric can be induced on a 4D hypersurface. We found that at the end of inflation, the squared fluctuations of the inflaton field are not exactly scale independent and becomes sensitive with the mass of the BH.
We consider the space-condensate inflation model to study the primordial gravitational waves generated in the early Universe. We calculate the energy spectrum of gravitational waves induced by the space-condensate inflation model for full frequency range with assumption that the phase transition between two consecutive regimes to be abrupt during evolution of the Universe. The suppression of energy spectrum is found in our model for the decreasing frequency of gravitational waves depending on the model parameter. To realize the suppression of energy spectrum of the primordial gravitational waves, we study an existence of the early phase transition during inflation for the space-condensate inflation model.
Understanding the role of higher derivatives is probably one of the most relevant questions in quantum gravity theory. Already at the semiclassical level, when gravity is a classical background for quantum matter fields, the action of gravity should include fourth derivative terms to provide renormalizability in the vacuum sector. The same situation holds in the quantum theory of metric. At the same time, including the fourth derivative terms means the presence of massive ghosts, which are gauge-independent massive states with negative kinetic energy. At both classical and quantum level such ghosts violate stability and hence the theory becomes inconsistent. Several approaches to solve this contradiction were invented and we are proposing one more, which looks simpler than those what were considered before. We explore the dynamics of the gravitational waves on the background of classical solutions and give certain arguments that massive ghosts produce instability only when they are present as physical particles. At least on the cosmological background one can observe that if the initial frequency of the metric perturbations is much smaller than the mass of the ghost, no instabilities are present.
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represents the matter geometrically induced. We explore about the existence of magnetic monopoles and gravitational waves in this torsional geometry. We conclude that the boundary terms can be identified as possible sources for the cosmological constant and torsion as the source of magnetic monopoles. We examine an example in which gravitational waves are produced during a de Sitter inflationary expansion of the universe.