Do you want to publish a course? Click here

Observation of Temperature-Induced Crossover to an Orbital-Selective Mott Phase in A$_{x}$Fe$_{2-y}$Se$_2$ (A=K, Rb) Superconductors

162   0   0.0 ( 0 )
 Added by Ming Yi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we study the A$_{x}$Fe$_{2-y}$Se$_2$ (A=K, Rb) superconductors using angle-resolved photoemission spectroscopy. In the low temperature state, we observe an orbital-dependent renormalization for the bands near the Fermi level in which the dxy bands are heavily renormliazed compared to the dxz/dyz bands. Upon increasing temperature to above 150K, the system evolves into a state in which the dxy bands have diminished spectral weight while the dxz/dyz bands remain metallic. Combined with theoretical calculations, our observations can be consistently understood as a temperature induced crossover from a metallic state at low temperature to an orbital-selective Mott phase (OSMP) at high temperatures. Furthermore, the fact that the superconducting state of A$_{x}$Fe$_{2-y}$Se$_2$ is near the boundary of such an OSMP constraints the system to have sufficiently strong on-site Coulomb interactions and Hunds coupling, and hence highlight the non-trivial role of electron correlation in this family of iron superconductors.



rate research

Read More

118 - A. Ricci , N. Poccia , B. Joseph 2015
We have used scanning micro x-ray diffraction to characterize different phases in superconducting K$_{x}$Fe$_{2-y}$Se$_2$ as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (T$_csim$32 K), phase separation temperature (T$_{ps}sim$520 K) and iron-vacancy order temperature (T$_{vo}sim$580 K). In addition to the iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic minority filamentary phase, we have found a clear evidence of the interface phase with tetragonal symmetry. The metallic phase is surrounded by this interface phase below $sim$300 K, and is embedded in the insulating texture. The spatial distribution of coexisting phases as a function of temperature provides a clear evidence of the formation of protected metallic percolative paths in the majority texture with large magnetic moment, required for the electronic coherence for the superconductivity. Furthermore, a clear reorganization of iron-vacancy order around the T$_{ps}$ and T$_c$ is found with the interface phase being mostly associated with a different iron-vacancy configuration, that may be important for protecting the percolative superconductivity in K$_{x}$Fe$_{2-y}$Se$_2$.
We present a systematic study of the nematic fluctuations in the iron chalcogenide superconductor Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($0 leq x leq 0.53$) using the elastoresistivity technique. Near $x = 0$, in proximity to the double-stripe magnetic order of Fe$_{1+y}$Te, a diverging $B_{1g}$ nematic susceptibility is observed. Upon increasing $x$, despite the absence of magnetic order, the $B_{2g}$ nematic susceptibility increases and becomes dominant, closely following the strength of the $(pi, pi)$ spin fluctuations. Over a wide range of compositions ($0.17 leq x leq 0.53$), while the $B_{2g}$ nematic susceptibility follows a Curie temperature dependence (with zero Weiss temperature) at low temperatures, it shows deviations from Curie-Weiss behavior for temperatures higher than $50K$. This is the opposite of what is observed in typical iron pnictides, where Curie-Weiss deviations are seen at low temperatures. We attribute this unusual temperature dependence to a loss of coherence of the $d_{xy}$ orbital, which is supported by our theoretical calculations. Our results highlight the importance of orbital differentiation on the nematic properties of iron-based materials.
Structural phase separation in A$_x$Fe$_{2-y}$Se$_2$ system has been studied by different experimental techniques, however, it should be important to know how the electronic uniformity is influenced, on which length scale the electronic phases coexist, and what is their spatial distribution. Here, we have used novel scanning photoelectron microscopy (SPEM) to study the electronic phase separation in K$_x$Fe$_{2-y}$Se$_2$, providing a direct measurement of the topological spatial distribution of the different electronic phases. The SPEM results reveal a peculiar interconnected conducting filamentary phase that is embedded in the insulating texture. The filamentary structure with a particular topological geometry could be important for the high T$_c$ superconductivity in the presence of a phase with a large magnetic moment in A$_x$Fe$_{2-y}$Se$_2$ materials.
The magnetic properties of iron-based superconductors $A$Fe$_2$As$_2$ ($A=$K, Cs, and Rb), which are characterized by the V-shaped dependence of the critical temperature ($T_{rm c}$) on pressure ($P$) were studied by means of the muon spin rotation/relaxation technique. In all three systems studied the magnetism was found to appear for pressures slightly below the critical one ($P_{rm c}$), i.e. at pressure where $T_{rm c}(P)$ changes the slope. Rather than competing, magnetism and superconductivity in $A$Fe$_2$As$_2$ are coexisting at $Pgtrsim P_{rm c}$ pressure region. Our results support the scenario of a transition from one pairing state to another, with different symmetries on either side of $P_{rm c}$.
Electronic correlation is of fundamental importance to high temperature superconductivity. Iron-based superconductors are believed to possess moderate correlation strength, which combined with their multi-orbital nature makes them a fascinating platform for the emergence of exotic phenomena. A particularly striking form is the emergence of an orbital selective Mott phase, where the localization of a subset of orbitals leads to a drastically reconstructed Fermi surface. Here, we report spectroscopic evidence of the reorganization of the Fermi surface from FeSe to FeTe as Se is substituted by Te. We uncover a particularly transparent way to visualize the localization of the $d_{xy}$ electron orbital through the suppression of its hybridization with the more coherent $d$ electron orbitals, which leads to a redistribution of the orbital-dependent spectral weight near the Fermi level. These noteworthy features of the Fermi surface are accompanied by a divergent behavior of a band renormalization in the $d_{xy}$ orbital. All of our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase towards an orbital-selective Mott phase in FeTe$_{1-x}$Se$_x$ as Se concentration is reduced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا