Do you want to publish a course? Click here

Milky Way demographics with the VVV survey. I. The 84-million star colour-magnitude diagram of the Galactic bulge

148   0   0.0 ( 0 )
 Added by Roberto Saito
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge and southern plane. Data taken during 2010-11 covered 315 deg2 in the bulge area in the JHKs bands. We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour-magnitude diagram (CMD) for the entire Galactic bulge. Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173.1M+ sources in the three bands. Selecting only the data points flagged as stellar, the total number of sources is 84.0M+. We built the largest CMDs published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8-10 deg, while in the inner part (b ~ 3deg) they appear to be spreading in colour, or even splitting into a secondary peak. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J-Ks) ~ 0.7-0.9 mag and Ks~14 mag. The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour are caused by reddening effects.



rate research

Read More

The new generation of IR surveys are revealing and quantifying Galactic features, providing an improved 3-D interpretation of our own Galaxy. We present an analysis of the global distribution of dust clouds in the bulge using the near-IR photometry of 157 million stars from the VVV Survey. We investigate the color magnitude diagram of the Milky Way bulge which shows a red giant clump of core He burning stars that is split in two color components, with a mean color difference of (Z-Ks)=0.55 magnitudes equivalent to A_V=2.0 magnitudes. We conclude that there is an optically thick dust lane at intermediate latitudes above and below the plane, that runs across several square degrees from l=-10 deg to l=+10 deg. We call this feature the Great Dark Lane. Although its exact distance is uncertain, it is located in front of the bulge. The evidence for a large-scale great dark lane within the Galactic bulge is important in order to constrain models of the barred Milky Way bulge and to compare our galaxy with external barred galaxies, where these kinds of features are prominent. We discuss two other potential implications of the presence of the Great Dark Lane for microlensing and bulge stellar populations studies.
155 - M. Soto , R. Barba , G. Gunthardt 2013
The new multi-epoch near-infrared VVV survey (VISTA Variables in the Via Lactea) is sampling 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Accurate astrometry established for the region surveyed allows the VVV data to be merged with overlapping surveys (e.g., GLIMPSE, WISE, 2MASS, etc.), thereby enabling the construction of longer baseline spectral energy distributions for astronomical targets. However, in order to maximize use of the VVV data, a set of transformation equations are required to place the VVV JHKs photometry onto the 2MASS system. The impetus for this work is to develop those transformations via a comparison of 2MASS targets in 152 VVV fields sampling the Galactic disk. The transformation coefficients derived exhibit a reliance on variables such as extinction. The transformed data were subsequently employed to establish a mean reddening law of E_{J-H}/E_{H-Ks}=2.13 +/- 0.04, which is the most precise determination to date and merely emphasizes the pertinence of the VVV data for determining such important parameters.
67 - F. Surot 2019
Recent observational programmes are providing a global view of the Milky Way bulge that serves as template for detailed comparison with models and extragalactic bulges. A number of surveys (i.e. VVV, GIBS, GES, ARGOS, BRAVA, APOGEE) are producing comprehensive and detailed extinction, metallicity, kinematics and stellar density maps of the Galactic bulge with unprecedented accuracy. However, the still missing key ingredient is the distribution of stellar ages across the bulge. To overcome this limitation, we aim to age-date the stellar population in several bulge fields with the ultimate goal of deriving an age map of the Bulge. This paper presents the methodology and the first results obtained for a field along the Bulge minor axis, at $b=-6^circ$. We use a new PSF-fitting photometry of the VISTA Variables in the V{i}a L{a}ctea (VVV) survey data to construct deep color-magnitude diagrams of the bulge stellar population down to $sim$ 2 mag below the Main Sequence turnoff. We find the bulk of the bulge stellar population in the observed field along the minor axis to be at least older than $sim$ 7.5 Gyr. In particular, when the metallicity distribution function spectroscopically derived by GIBS is used, the best fit to the data is obtained with a combination of synthetic populations with ages in between $sim$ 7.5 Gyr and 11 Gyr. However, the fraction of stars younger than $sim$ 10 Gyr strongly depends upon the number of Blue Straggler Stars present in the bulge. Simulations show that the observed color-magnitude diagram of the bulge in the field along the minor axis is incompatible with the presence of a conspicuous population of intermediate-age/young (i.e. $lesssim 5$ Gyr) stars.
The VISTA Variable Survey (VVV) is able to map the Galaxy at l<0 with an unpaired depth (at least 3 mag deeper than 2MASS), opening new possibilities for studying the inner structure of the Milky Way. In this paper we concentrate on the exploitation of these data to better understand the spatial disposition and distribution of the structures present in the inner Milky Way, particularly the Long Bar and its interaction with the inner disc. The observations show the presence of a clear overdensity of stars with associated recent stellar formation that we interpret as the traces of the Long Bar, and we derive an angle for it of 41+/-5 with the Sun-Galactic centre line, touching the disc near l=27 and l=-12. The colour-magnitude diagrams presented here also show a lack of disc stars in several lines of sight, a fact that we associate with the truncation of the disc by the potential of this bar for Galactocentric radius less than 5kpc.
We use the extensive $Gaia$ Data Release 2 set of Long Period Variables to select a sample of Oxygen-rich Miras throughout the Milky Way disk and bulge for study. Exploiting the relation between Mira pulsation period and stellar age/chemistry, we slice the stellar density of the Galactic disk and bulge as a function of period. We find the morphology of both components evolves as a function of stellar age/chemistry with the stellar disk being stubby at old ages, becoming progressively thinner and more radially extended at younger stellar ages, consistent with the picture of inside-out and upside-down formation of the Milky Ways disk. We see evidence of a perturbed disk, with large-scale stellar over-densities visible both in and away from the stellar plane. We find the bulge is well modelled by a triaxial boxy distribution with an axis ratio of $sim [1:0.4:0.3]$. The oldest of the Miras ($sim$ 9-10 Gyr) show little bar-like morphology, whilst the younger stars appear inclined at a viewing angle of $sim 21^{circ}$ to the Sun-Galactic Centre line. This suggests that bar formation and buckling took place 8-9 Gyr ago, with the older Miras being hot enough to avoid being trapped by the growing bar. We find the youngest Miras to exhibit a strong peanut morphology, bearing the characteristic X-shape of an inclined bar structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا