Until now, investigating the early stages of galaxy formation has been primarily the realm of theoretical modeling and computer simulations, which require many physical ingredients and are challenging to test observationally. However, the latest Hubble Space Telescope observations in the near infrared are shedding new light on the properties of galaxies within the first billion years after the Big Bang, including our recent discovery of the most distant proto-cluster of galaxies at redshift z~8. Here, I compare predictions from models of primordial and metal-enriched star formation during the dark ages with the latest Hubble observations of galaxies during the epoch of reionization. I focus in particular on the luminosity function and on galaxy clustering as measured from our Hubble Space Telescope Brightest of Reionizing Galaxies (BoRG) survey. BoRG has the largest area coverage to find luminous and rare z~8 sources that are among the first galaxies to have formed in the Universe.