Do you want to publish a course? Click here

Commutative ring objects in pro-categories and generalized Moore spectra

115   0   0.0 ( 0 )
 Added by Daniel Davis
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We develop a rigidity criterion to show that in simplicial model categories with a compatible symmetric monoidal structure, operad structures can be automatically lifted along certain maps. This is applied to obtain an unpublished result of M. J. Hopkins that certain towers of generalized Moore spectra, closely related to the K(n)-local sphere, are E-infinity algebras in the category of pro-spectra. In addition, we show that Adams resolutions automatically satisfy the above rigidity criterion. In order to carry this out we develop the concept of an operadic model category, whose objects have homotopically tractable endomorphism operads.



rate research

Read More

192 - Birgit Richter 2017
In this survey paper on commutative ring spectra we present some basic features of commutative ring spectra and discuss model category structures. As a first interesting class of examples of such ring spectra we focus on (commutative) algebra spectra over commutative Eilenberg-MacLane ring spectra. We present two constructions that yield commutative ring spectra: Thom spectra associated to infinite loop maps and Segals construction starting with bipermutative categories. We define topological Hochschild homology, some of its variants, and topological Andre-Quillen homology. Obstruction theory for commutative structures on ring spectra is described in t
We prove the equivalence of several hypotheses that have appeared recently in the literature for studying left Bousfield localization and algebras over a monad. We find conditions so that there is a model structure for local algebras, so that localization preserves algebras, and so that localization lifts to the level of algebras. We include examples coming from the theory of colored operads, and applications to spaces, spectra, and chain complexes.
In this paper we develop methods for classifying Baker-Richter-Szymiks Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss-Hopkins obstruction theory, and give descent-theoretic tools, applying Luries work on $infty$-categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $E$, we find that the algebraic Azumaya algebras whose coefficient ring is projective are governed by the Brauer-Wall group of $pi_0(E)$, recovering a result of Baker-Richter-Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin-Tate spectra have either 4 or 2 Morita equivalence classes depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $Bbb Z/8 times Bbb Z/2$. Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$-algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an exotic $KO$-algebra with the same coefficient ring as $End_{KO}(KU)$. This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$, previously studied by Mathew and Stojanoska.
We review and extend the theory of Thom spectra and the associated obstruction theory for orientations. We recall (from May, Quinn, and Ray) that a commutative ring spectrum A has a spectrum of units gl(A). To a map of spectra f: b -> bgl(A), we associate a commutative A-algebra Thom spectrum Mf, which admits a commutative A-algebra map to R if and only if b -> bgl(A) -> bgl(R) is null. If A is an associative ring spectrum, then to a map of spaces f: B -> BGL(A) we associate an A-module Thom spectrum Mf, which admits an R-orientation if and only if B -> BGL(A) -> BGL(R) is null. We also note that BGL(A) classifies the twists of A-theory. We develop and compare two approaches to the theory of Thom spectra. The first involves a rigidified model of A-infinity and E-infinity spaces. Our second approach is via infinity categories. In order to compare these approaches to one another and to the classical theory, we characterize the Thom spectrum functor from the perspective of Morita theory.
In this paper, we provide a new proof of the stable Adams conjecture. Our proof constructs a canonical null-homotopy of the stable J-homomorphism composed with a virtual Adams operation, by applying the $mathrm{K}$-theory functor to a multi-natural transformation. We also point out that the original proof of the stable Adams conjecture is incorrect and present a correction. This correction is crucial to our main application. We settle the question on the height of higher associative structures on the mod $p^k$ Moore spectrum $mathrm{M}_p(k)$ at odd primes. More precisely, for any odd prime $p$, we show that $mathrm{M}_p(k)$ admits a Thomified $mathbb{A}_n$-structure if and only if $n < p^k$. We also prove a weaker result for $p=2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا