Do you want to publish a course? Click here

PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code

168   0   0.0 ( 0 )
 Added by Leo Alberto Girardi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major input physics, together with the inclusion of the pre-main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of promptly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other sets with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Suns metallicity Z=0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.



rate research

Read More

This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages ($5 leq rm log(Age);[yr] leq 10.3$), masses ($0.1 leq M/M_{odot} leq 300$), and metallicities ($-2.0 leq rm [Z/H] leq 0.5$). The models are self-consistently and continuously evolved from the pre-main sequence to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the pre-main sequence to the end of core helium burning for $-4.0 leq rm [Z/H] < -2.0$. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.
This is the second paper of a series devoted to present an updated release of the BaSTI ( a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library. Following the publication of the updated solar scaled library, here we present the library for a $alpha-$enhanced heavy element distribution. These new alpha-enhanced models account for all improvements and updates in the reference solar metal distribution and physics inputs, as in the new solar scaled library. The models cover a mass range between 0.1 and $15~M_{odot}$, 18 metallicities between [Fe/H]=-3.20 and +0.06 with [alpha/Fe]=+0.4 , and a helium to metal enrichment ratio Delta{Y}Delta{Z}=1.31. For each metallicity, He-enhanced stellar models are also provided. The isochrones cover (typically) an age range between 20Myr and 14.5Gyr, including consistently the pre-main sequence phase. Asteroseismic properties of the theoretical models have also been calculated. Models and isochrones have been compared with results from independent calculations, with the previous BaSTI release, and also with selected observations, to test the accuracy/reliability of these new calculations. All stellar evolution tracks, asteroseismic properties and isochrones are made publicly available at http://basti-iac.oa-teramo.inaf.it
We introduce a new generation of PARSEC-COLIBRI stellar isochrones that include a detailed treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase, and covering a wide range of initial metallicities (0.0001<Zi<0.06). Compared to previous releases, the main novelties and improvements are: use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in the stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first overtone modes; new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the C-star island that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6 Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.
We present a new grid of stellar models and isochrones for old stellar populations, covering a large range of [Fe/H] values, for an heavy element mixture characterized by CNONa abundance anticorrelations as observed in Galactic globular cluster stars. The effect of this metal abundance pattern on the evolutionary properties of low mass stars, from the main sequence to the horizontal branch phase is analyzed. We perform comparisons between these new models, and our reference alpha-enhanced calculations, and discuss briefly implications for CMDs showing multiple main sequence or subgiant branches. A brief qualitative discussion of the effect of CN abundances on color-T_{eff} transformations is also presented, highlighting the need to determine theoretical color transformations for the appropriate metal mixture, if one wants to interpret observations in the Stroemgren system, or broadband filters blueward of the Johnson V-band.
108 - Thibault Lejeune 2000
We have used an updated version of the empirically and semi-empirically calibrated BaSeL library of synthetic stellar spectra of Lejeune et al. (1997, 1998) and Westera et al. (1999) to calculate synthetic photometry in the UBVRIJHKLLM, HST-WFPC2, Geneva, and Washington systems for the entire set of non-rotating Geneva stellar evolution models covering masses from 0.4-0.8 to 120-150 Msun and metallicities Z=0.0004 (1/50 Zsun) to 0.1 (5 Zsun). The results are provided in a database which includes all individual stellar tracks and the corresponding isochrones covering ages from 10^3 yr to 16--20 Gyr in time steps of Delta(log t)= 0.05 dex. The database also includes a new grid of stellar tracks of very metal-poor stars (Z=0.0004) from 0.8 - 150 Msun calculated with the Geneva stellar evolution code. The full database will be available in electronic form at the CDS (http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/(vol)/(page)) and at http://webast.ast.obs-mip.fr/stellar/.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا