Ab initio study of the elastic and electronic properties of tetragonal Th2NiC2


Abstract in English

This work reports on the elastic and electronic properties of the newly discovered superconductor Th2NiC2 (A .Machado, et al., Supercond. Sci. Technol. 25 (2012) 045010) as obtained within ab initio calculations. We found that Th2NiC2 is mechanically stable and it will behave as a ductile material exhibiting enhanced elastic anisotropy in shear and a rather low hardness Our data reveal that for Th2NiC2 the Fermi level is located in a deep DOS minimum and the experimentally observed increase in TC in the sequence Th2NiC2 -> Th1.8Sc0.2NiC2 may be explained by the growth of N(EF). We also speculate that (i) an increase in the hole concentration will promote exchange splitting of Ni 3d bands, therefore the hole-doped Th2NiC2 should have a certain concentration border, where a phase transition from the superconducting to the magnetic state will be expected, and (ii) an increase in N(EF) (and, probably, in TC) for Th2NiC2-based materials may be also achieved by an alternative way: by electron doping - for example, by partial substitution of V for Th or Cu for Ni, as well as by partial substitution of N for C with the formation of Th-Ni carbonitrides like Th2NiC2-xNx.

Download