Do you want to publish a course? Click here

An XMM-Newton Survey of the Soft X-ray Background. II. An All-Sky Catalog of Diffuse O VII and O VIII Emission Intensities

224   0   0.0 ( 0 )
 Added by David Henley
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

We present measurements of the Galactic halos X-ray emission for 110 XMM-Newton sight lines, selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The temperature is fairly uniform (median = 2.22e6 K, interquartile range = 0.63e6 K), while the emission measure and intrinsic 0.5--2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7)e-3 cm^-6 pc and ~(0.5-7)e-12 erg cm^-2 s^-1 deg^-2, respectively, with median detections of 1.9e-3 cm^-6 pc and 1.5e-12 erg cm^-2 s^-1 deg^-2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.
We use the EAGLE cosmological, hydrodynamical simulations to predict the column density and equivalent width distributions of intergalactic O VII ($E=574$ eV) and O VIII ($E=654$ eV) absorbers at low redshift. These two ions are predicted to account for 40% of the gas-phase oxygen, which implies that they are key tracers of cosmic metals. We find that their column density distributions evolve little at observable column densities from redshift 1 to 0, and that they are sensitive to AGN feedback, which strongly reduces the number of strong (column density $N gtrsim 10^{16} , mathrm{cm}^{-2})$ absorbers. The distributions have a break at $N sim 10^{16} , mathrm{cm}^{-2}$, corresponding to overdensities of $sim 10^{2}$, likely caused by the transition from sheet/filament to halo gas. Absorption systems with $N gtrsim 10^{16} mathrm{cm}^{-2}$ are dominated by collisionally ionized O VII and O VIII, while the ionization state of oxygen at lower column densities is also influenced by photoionization. At these high column densities, O VII and O VIII arising in the same structures probe systematically different gas temperatures, meaning their line ratio does not translate into a simple estimate of temperature. While O VII and O VIII column densities and covering fractions correlate poorly with the H I column density at $N_{mathrm{H , I}} gtrsim 10^{15} , mathrm{cm}^{-2}$, O VII and O VIII column densities are higher in this regime than at the more common, lower H I column densities. The column densities of O VI and especially Ne VIII, which have strong absorption lines in the UV, are good predictors of the strengths of O VII and O VIII absorption and can hence aid in the detection of the X-ray lines.
207 - M. Galeazzi , A. Gupta , K. Covey 2006
We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and 200 pc from the Sun and its density is sufficiently high to shield about 75% of the foreground emission in the 3/4 keV energy band.The combination of the two observations makes possible an evaluation of the OVII and OVIII emission both for the foreground component due to the Local Bubble,and the background one, due primary to the galactic halo.The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56 photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20 and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2 s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple three component model, one unabsorbed and one absorbed plasma component, and a power law, without evidence for any strong contamination from ion exchange in the solar system. Assuming that the two plasma components are in thermal equilibrium we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission we obtain a lower and upper limit for the plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to 0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.
XMM-Newton observations of 10 ULIRGs are reported. The aim is to investigate in hard X-rays a complete ULIRG sample selected from the bright IRAS 60$mu$m catalogue. All sources are detected in X-rays, 5 of which for the first time. These observations confirm that ULIRGs are intrinsically faint X-rays sources, their observed X-ray luminosities being typically L(2-10 keV)<1E42-43 erg/s, whereas their bolometric luminosities are L>1E45 erg/s. In all sources we find evidence for thermal emission from hot plasma with kT~0.7keV, dominating the X-ray spectra below 1keV, and likely associated with a nuclear or circumnuclear starburst. This thermal emission appears uncorrelated with the FIR luminosity, suggesting that,in addition to the ongoing rate of star formation, other parameters may also affect it. The soft X-ray emission appears to be extended on a scale of ~30kpc for Mkn231 and IRAS19254-7245, possible evidence of galactic superwinds. In these 2 sources, in IRAS20551-4250 and IRAS23128-5919 we find evidence for the presence of hidden AGNs, while a minor AGN contribution may be suspected also in IRAS20100-4156. In particular, we have detected a strong Fe line at 6.4keV in the spectrum of IRAS19254-7245 and a weaker one in Mkn231, suggestive of deeply buried AGNs. For the other sources, the X-ray luminosities and spectral shapes are consistent with hot thermal plasma and X-ray binary emissions of mainly starburst origin. We find that the 2-10keV luminosities in these sources, most likely due to high-mass X-ray binaries, are correlated with L_FIR: both luminosities are good indicators of the current global SFR in the galaxy. The composite nature of ULIRGs is then confirmed, with hints for a predominance of the starburst over the AGN phenomenon in these objects.
This paper is the second in a series devoted to the hard X-ray (17-60 keV) whole sky survey performed by the INTEGRAL observatory over seven years. Here we present a catalog of detected sources which includes 521 objects, 449 of which exceed a 5 sigma detection threshold on the time-averaged map of the sky, and 53 were detected in various subsamples of exposures. Among the identified sources with known and suspected nature, 262 are Galactic (101 low-mass X-ray binaries, 95 high-mass X-ray binaries, 36 cataclysmic variables, and 30 of other types) and 219 are extragalactic, including 214 active galactic nuclei (AGNs), 4 galaxy clusters, and galaxy ESO 389-G 002. The extragalactic (|b|>5 deg) and Galactic (|b|<5 deg) persistently detected source samples are of high identification completeness (respectively ~96% and ~94%) and valuable for population studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا