Do you want to publish a course? Click here

Quasi-Convex Free Polynomials

79   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Let $Rx$ denote the ring of polynomials in $g$ freely non-commuting variables $x=(x_1,...,x_g)$. There is a natural involution * on $Rx$ determined by $x_j^*=x_j$ and $(pq)^*=q^* p^*$ and a free polynomial $pinRx$ is symmetric if it is invariant under this involution. If $X=(X_1,...,X_g)$ is a $g$ tuple of symmetric $ntimes n$ matrices, then the evaluation $p(X)$ is naturally defined and further $p^*(X)=p(X)^*$. In particular, if $p$ is symmetric, then $p(X)^*=p(X)$. The main result of this article says if $p$ is symmetric, $p(0)=0$ and for each $n$ and each symmetric positive definite $ntimes n$ matrix $A$ the set ${X:A-p(X)succ 0}$ is convex, then $p$ has degree at most two and is itself convex, or $-p$ is a hermitian sum of squares.



rate research

Read More

44 - Scott B. Lindstrom 2020
The problem of minimizing an entropy functional subject to linear constraints is a useful example of partially finite convex programming. In the 1990s, Borwein and Lewis provided broad and easy-to-verify conditions that guarantee strong duality for such problems. Their approach is to construct a function in the quasi-relative interior of the relevant infinite-dimensional set, which assures the existence of a point in the core of the relevant finite-dimensional set. We revisit this problem, and provide an alternative proof by directly appealing to the definition of the core, rather than by relying on any properties of the quasi-relative interior. Our approach admits a minor relaxation of the linear independence requirements in Borwein and Lewis framework, which allows us to work with certain piecewise-defined moment functions precluded by their conditions. We provide such a computed example that illustrates how this relaxation may be used to tame observed Gibbs phenomenon when the underlying data is discontinuous. The relaxation illustrates the understanding we may gain by tackling partially-finite problems from both the finite-dimensional and infinite-dimensional sides. The comparison of these two approaches is informative, as both proofs are constructive.
174 - Miklos Laczkovich 2020
Let $G$ be a topological Abelian semigroup with unit, let $E$ be a Banach space, and let $C(G,E)$ denote the set of continuous functions $fcolon Gto E$. A function $fin C(G,E)$ is a generalized polynomial, if there is an $nge 0$ such that $Delta_{h_1} ldots Delta_{h_{n+1}} f=0$ for every $h_1 ,ldots , h_{n+1} in G$, where $Delta_h$ is the difference operator. We say that $fin C(G,E)$ is a polynomial, if it is a generalized polynomial, and the linear span of its translates is of finite dimension; $f$ is a w-polynomial, if $ucirc f$ is a polynomial for every $uin E^*$, and $f$ is a local polynomial, if it is a polynomial on every finitely generated subsemigroup. We show that each of the classes of polynomials, w-polynomials, generalized polynomials, local polynomials is contained in the next class. If $G$ is an Abelian group and has a dense subgroup with finite torsion free rank, then these classes coincide. We introduce the classes of exponential polynomials and w-expo-nential polynomials as well, establish their representations and connection with polynomials and w-polynomials. We also investigate spectral synthesis and analysis in the class $C(G,E)$. It is known that if $G$ is a compact Abelian group and $E$ is a Banach space, then spectral synthesis holds in $C(G,E)$. On the other hand, we show that if $G$ is an infinite and discrete Abelian group and $E$ is a Banach space of infinite dimension, then even spectral analysis fails in $C(G,E)$. If, however, $G$ is discrete, has finite torsion free rank and if $E$ is a Banach space of finite dimension, then spectral synthesis holds in $C(G,E)$.
Let $P(b)subset R^d$ be a semi-rational parametric polytope, where $b=(b_j)in R^N$ is a real multi-parameter. We study intermediate sums of polynomial functions $h(x)$ on $P(b)$, $$ S^L (P(b),h)=sum_{y}int_{P(b)cap (y+L)} h(x) mathrm dx, $$ where we integrate over the intersections of $P(b)$ with the subspaces parallel to a fixed rational subspace $L$ through all lattice points, and sum the integrals. The purely discrete sum is of course a particular case ($L=0$), so $S^0(P(b), 1)$ counts the integer points in the parametric polytopes. The chambers are the open conical subsets of $R^N$ such that the shape of $P(b)$ does not change when $b$ runs over a chamber. We first prove that on every chamber of $R^N$, $S^L (P(b),h)$ is given by a quasi-polynomial function of $bin R^N$. A key point of our paper is an analysis of the interplay between two notions of degree on quasi-polynomials: the usual polynomial degree and a filtration, called the local degree. Then, for a fixed $kleq d$, we consider a particular linear combination of such intermediate weighted sums, which was introduced by Barvinok in order to compute efficiently the $k+1$ highest coefficients of the Ehrhart quasi-polynomial which gives the number of points of a dilated rational polytope. Thus, for each chamber, we obtain a quasi-polynomial function of $b$, which we call Barvinoks patched quasi-polynomial (at codimension level $k$). Finally, for each chamber, we introduce a new quasi-polynomial function of $b$, the cone-by-cone patched quasi-polynomial (at codimension level $k$), defined in a refined way by linear combinations of intermediate generating functions for the cones at vertices of $P(b)$. We prove that both patched quasi-polynomials agree with the discrete weighted sum $bmapsto S^0(P(b),h)$ in the terms corresponding to the $k+1$ highest polynomial degrees.
121 - N. Levenberg , F. Wielonsky 2021
Polynomial spaces associated to a convex body $C$ in $({bf R}^+)^d$ have been the object of recent studies. In this work, we consider polynomial spaces associated to non-convex $C$. We develop some basic pluripotential theory including notions of $C-$extremal plurisubharmonic functions $V_{C,K}$ for $Ksubset {bf C}^d$ compact. Using this, we discuss Bernstein-Walsh type polynomial approximation results and asymptotics of random polynomials in this non-convex setting.
107 - B. F. Svaiter 2011
We analyze a class of sublinear functionals which characterize the interior and the exterior of a convex cone in a normed linear space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا