Do you want to publish a course? Click here

The visual angle metric and Mobius transformations

126   0   0.0 ( 0 )
 Added by Gendi Wang
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

A new similarity invariant metric $v_G$ is introduced. The visual angle metric $v_G$ is defined on a domain $GsubsetneqRn$ whose boundary is not a proper subset of a line. We find sharp bounds for $v_G$ in terms of the hyperbolic metric in the particular case when the domain is either the unit ball $Bn$ or the upper half space $Hn$. We also obtain the sharp Lipschitz constant for a Mobius transformation $f: Grightarrow G$ between domains $G$ and $G$ in $Rn$ with respect to the metrics $v_G$ and $v_{G}$. For instance, in the case $G=G=Bn$ the result is sharp.



rate research

Read More

250 - Gendi Wang , Matti Vuorinen 2015
The distortion of distances between points under maps is studied. We first prove a Schwarz-type lemma for quasiregular maps of the unit disk involving the visual angle metric. Then we investigate conversely the quasiconformality of a bilipschitz map with respect to the visual angle metric on convex domains. For the unit ball or half space, we prove that a bilipschitz map with respect to the visual angle metric is also bilipschitz with respect to the hyperbolic metric. We also obtain various inequalities relating the visual angle metric to other metrics such as the distance ratio metric and the quasihyperbolic metric.
The Mobius metric $delta_G$ is studied in the cases where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Mobius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Mobius metric and its connection to the hyperbolic metric in polygon domains.
We compare a Gromov hyperbolic metric with the hyperbolic metric in the unit ball or in the upper half space, and prove sharp comparison inequalities between the Gromov hyperbolic metric and some hyperbolic type metrics. We also obtain several sharp distortion inequalities for the Gromov hyperbolic metric under some families of M{o}bius transformations.
We study locally compact metric spaces that enjoy various forms of homogeneity with respect to Mobius self-homeomorphisms. We investigate connections between such homogeneity and the combination of isometric homogeneity with invertibility. In particular, we provide a new characterization of snowflakes of boundaries of rank-one symmetric spaces of non-compact type among locally compact and connected metric spaces. Furthermore, we investigate the metric implications of homogeneity with respect to uniformly strongly quasi-Mobius self-homeomorphisms, connecting such homogeneity with the combination of uniform bi-Lipschitz homogeneity and quasi-invertibility. In this context we characterize spaces containing a cut point and provide several metric properties of spaces containing no cut points. These results are motivated by a desire to characterize the snowflakes of boundaries of rank-one symmetric spaces up to bi-Lipschitz equivalence.
459 - A.G. Aksoy , B. Maurizi 2007
In this paper we examine the relationship between hyperconvex hulls and metric trees. After providing a linking construction for hyperconvex spaces, we show that the four-point property is inherited by the hyperconvex hull, which leads to the theorem that every complete metric tree is hyperconvex. We also consider some extension theorems for these spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا